
Benjamin Doerr: Theory of Evolutionary Computation

Theory of Evolutionary Computation:
A True Beginners Tutorial

1

Benjamin Doerr

École Polytechnique, Paris-Saclay, France

CEC 2017, Donostia – San Sebastián

Benjamin Doerr: Theory of Evolutionary Computation

Link to the Latest Version
� You can always find the latest version online at

http://people.mpi-inf.mpg.de/~doerr/cec17_tutorial_theory.pdf

2

Benjamin Doerr: Theory of Evolutionary Computation

Instructor: Benjamin Doerr
� Benjamin Doerr is a full professor at the French École Polytechnique.

� He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from the university of Kiel (Germany). His research area is
the theory both of problem-specific algorithms and of randomized search
heuristics like evolutionary algorithms. Major contributions to the latter
include runtime analyses for evolutionary algorithms and ant colony
optimizers, as well as the further development of the drift analysis
method, in particular, multiplicative and adaptive drift. In the young area
of black-box complexity, he proved several of the current best bounds.

� Together with Frank Neumann and Ingo Wegener, Benjamin Doerr
founded the theory track at GECCO and served as its co-chair 2007-
2009 and 2014. He is a member of the editorial boards of several
journals, among them Artificial Intelligence, Evolutionary Computation,
Natural Computing, and Theoretical Computer Science. Together with
Anne Auger, he edited the book Theory of Randomized Search
Heuristics.

3

Benjamin Doerr: Theory of Evolutionary Computation

This Tutorial: A Real Introduction to Theory
� GECCO, CEC, PPSN always had a good number of theory tutorials

� They did a great job in educating the theory community

� However, not much was offered for those attendees which

� have little experience with theory

� but want to understand what the theory people are doing (and why)

� This is the target audience of this tutorial. We try to answer those
questions which come before the classic theory tutorials

4

Benjamin Doerr: Theory of Evolutionary Computation

History/Evolution of This Tutorial:
� A difficult start: GECCO 2013 and GECCO 2015 did not accept a real

beginner’s theory tutorial.

� Real beginners theory tutorials:
� PPSN 2014: Anne Auger and me gave the first real beginners theory

tutorial, covering both discrete and continuous optimization
� GECCO 2016 & WCCI 2016: A real beginners tutorial on theory of

evolutionary computation in discrete search spaces (by Carola Doerr
and me)

� PPSN 2016: stronger focus on adaptive parameter settings
� CEC 2017 & GECCO 2017: added “fast genetic algorithms”

� This tutorial:
� 20% overlap with PPSN 2014
� 60% overlap with GECCO/CEC 2016
� 85% overlap with PPSN 2016

5

Benjamin Doerr: Theory of Evolutionary Computation

Questions Answered in This Tutorial
� What is theory in evolutionary computation (EC)?

� Why do theory? How does it help us understanding EC?

� How do I read and interpret a theory result?

� What type of results can I expect from theory (and which not)?

� What are current “hot topics” in the theory of EC?

6

Benjamin Doerr: Theory of Evolutionary Computation

Focus: EAs with Discrete Search Spaces
� We try to answer these questions independent of a particular subarea of

theory

� However, to not overload you with definitions and notation, we focus on
evolutionary algorithms on discrete search spaces

� Hence we intentionally omit examples from

� genetic programming, estimation of distribution algorithms, ant colony
optimizers, swarm intelligence, …

� all subareas of continuous optimization

� As said, this is for teaching purposes only. There is strong theory
research in all these areas. All answers this tutorial give are equally valid
for these areas

7

Benjamin Doerr: Theory of Evolutionary Computation

A Final Word Before We Start
� If I’m saying things you don’t understand or if you want to know more

than what I had planned to discuss, don’t be shy to ask questions at any
time!

� This is “your” tutorial and I want it to be as useful for you as possible

� This is still a young tutorial. To further improve it, your feedback (positive
and negative) is greatly appreciated!

� Æ So talk to me after the tutorial, during the coffee breaks, social
event, late-night beer drinking, … or send me an email

8

Benjamin Doerr: Theory of Evolutionary Computation

Outline of the Tutorial
� Part I: What We Mean by Theory of EC

� Part II: A Guided Walk Through a Famous Theory Result

� an illustrative example to convey the main messages of this tutorial

� Part III: How Theory Has Contributed to a Better Understanding of EAs

� 3 examples showing how theory can have an impact

� Part IV: Current Hot Topics in the Theory of EAs

� in particular: dynamic/adaptive parameter choices

� Part V: Concluding Remarks

� Appendix: glossary, references

9

Benjamin Doerr: Theory of Evolutionary Computation

Part I:

What We Mean by
“Theory of EC”

10

Benjamin Doerr: Theory of Evolutionary Computation

What Do We Mean With Theory?
� Definition (for this tutorial):

By theory, we mean results proven with mathematical rigor

� Mathematical rigor:

� make precise the evolutionary algorithm (EA) you regard

� make precise the problem you try to solve with the EA

� make precise a statement on the performance of the EA solving this
problem

� prove this statement

� Example:
Theorem: The (1+1) EA finds the optimum of the OneMax test function
݂: ሼ0,1ሽ → Թ; ݔ ↦ ∑ ݔ

ୀଵ in an expected number of at most ݁݊	ln	ሺ݊ሻ
iterations.
Proof: blah, blah, …

11

Benjamin Doerr: Theory of Evolutionary Computation

Other Notions of Theory
� Theory: Mathematically proven results

� Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question

� example: add a neutrality bit to two classic test functions, run a GA on
these, and derive insight from the outcomes of the experiments

� Descriptive theory: Try to describe/measure/quantify observations

� example: some parts of landscape analysis

� “Theories”: Unproven claims that (mis-)guide our thinking

� example: building block hypothesis

12

Benjamin Doerr: Theory of Evolutionary Computation

Other Notions of Theory
� Theory: Mathematically proven results

============<in this tutorial, we focus on the above>============
� Experimentally guided theory: Set up an artificial experiment to

experimentally analyze a particular question

� example: add a neutrality bit to two classic test functions, run a GA on
these, and derive insight from the outcomes of the experiments

� Descriptive theory: Try to describe/measure/quantify observations

� example: some parts of landscape analysis

� “Theories”: Unproven claims that (mis-)guide our thinking

� example: building block hypothesis

13

Benjamin Doerr: Theory of Evolutionary Computation

Why Do Theory? Because of Results
� Absolute guarantee that the result is correct

� your can be sure

� reviewers can check truly the correctness of results

� readers can trust reviewers or, with moderate maths skills, check the
correctness themselves

� Many results can only be obtained by theory; e.g., because you make a
statement on a very large or even infinite set

� all bit-strings of length ݊,

� all TSP instances on ݊ vertices,

� all input sizes ݊ ∈ Գ,

� all possible algorithms for a problem

14

Benjamin Doerr: Theory of Evolutionary Computation

Why Do Theory? Because of the Approach
� A proof (automatically) gives insight in

� how things work (Æ working principles of EC)

� why the result is as it is

� Self-correcting/self-guiding effect of proving: when proving a result, you
are automatically pointed to the questions that need more thought

� Trigger for new ideas

� clarifying nature of mathematics

� playful nature of mathematicians

15

Benjamin Doerr: Theory of Evolutionary Computation

The Price for All This
All this has a certain a price…
Possible drawbacks of theory results include:

� Restricted scope: So far, mostly simple algorithms could be analyzed for
simple optimization problems

� Less precise results: Constants are not tight, or not explicit as in
“ܱ ݊ଶ ” = “less than ܿ݊ଶ for some unspecified constant ܿ”

� Less specific results: You get a weaker guarantee for all problem
instances instead of a stronger one for the instances that show up in your
real-world application

� Theory results can be very difficult to obtain: The proof might be short
and easy to read, but finding it took long hours

� Usually, there is no generic way to the solution, but you need a
completely new, clever idea

16

Benjamin Doerr: Theory of Evolutionary Computation

Theory and Experiments:
Complementary Results

17

EXPERIMENTS .
� only a finite number of instances

of bounded size
Æ have to see how

representative this is
� only tells you numbers
� real-world instances

� everything you can implement
� exact numbers
� depends on implementation
� can be cheap (well, depends…)

THEORY .
� cover all problem instances of

arbitrary sizes
Æ guarantee!

� proof tells you the reason
� only models for real-world

instances (realistic?)

� limited scope, e.g., (1+1) EA
� limited precision, e.g., ܱ ݊ଶ
� implementation independent
� finding proofs can be difficult

Æ Ideal: Combine theory and experiments. Difficulty: Get good theory people
and good experimental people to talk to each other…

Benjamin Doerr: Theory of Evolutionary Computation

Part II:

A Guided Walk
Through a Famous

Theory Result

18

Benjamin Doerr: Theory of Evolutionary Computation

Outline for This Part
� We use a simple but famous theory result

� as an example for a non-trivial result

� to show how to read a theory result

� to explain the meaning of such a theoretical statement

� to discuss typical shortcomings of theory results

19

Benjamin Doerr: Theory of Evolutionary Computation

A Famous Result
Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

݂: 0,1 → Թ, ,ଵݔ … , ݔ ↦ݓݔ

ୀଵ
, ,ଵݓ … ݓ, ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.

Reference:
[DJW02] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81,
2002.

-- famous paper (500+ citations, maybe the most-cited pure EA theory paper)

-- famous problem (20+ papers working on exactly this problem, many very
useful methods were developed in trying to solve this problem)

20

Benjamin Doerr: Theory of Evolutionary Computation

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

݂: 0,1 → Թ, ,ଵݔ … , ݔ ↦ݓݔ

ୀଵ
, ,ଵݓ … ݓ, ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.

(1+1) evolutionary algorithm to maximize ࢌ: , → Թ:
1. choose ݔ ∈ 0,1 uniformly at random
2. while not terminate do
3. generate ݕ from ݔ by flipping each bit independently

with probability 1/݊ (“standard-bit mutation”)
4. if ݂ ݕ ݂ ݔ then ݔ ≔ ݕ
5. output ݔ

Reading This Result

21

at most ݊ܥ ln ݊ for some
unspecified constant ܥ

a hidden all-quantifier: we claim
the result for all …,ଵݓ , ݓ ∈ Թ

performance measure: number of iterations or
fitness evaluations, but not runtime in seconds

A mathematically
proven result

should be made
precise in the paper to
avoid any ambiguity

Benjamin Doerr: Theory of Evolutionary Computation

What is Cool About This Result?
� Gives a proven performance guarantee

� General: a statement for all linear functions in all dimensions ݊
� Non-trivial

� Surprising

� Provides insight in how EAs work

Theorem: The (1+1) evolutionary algorithm finds the maximum of any
linear function

݂: 0,1 → Թ, ,ଵݔ … , ݔ ↦ݓݔ

ୀଵ
, ,ଵݓ … , ݓ ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.

22

Æ more on these 3 items
on the next slides

Benjamin Doerr: Theory of Evolutionary Computation

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

23

Benjamin Doerr: Theory of Evolutionary Computation

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

� Hard to prove
� 7 pages complicated maths proof in [DJW02]
� we can do it in one page now, but only because we developed deep

analysis techniques (artificial fitness functions, drift analysis)

� No “easy” explanation
� monotonicity is not enough: if the ݓ are all positive, then “flipping a 0

to a 1 always increases the fitness” (monotonicity).
� easy explanation that is not true: monotonic functions are easy to

optimize for an EA – disproved in [DJS+13]
� separability is not enough

� a linear function can be written as a sum of functions ݂ such that
the ݂ depend on disjoint sets of bits

� not true that the optimization time of such a sum is not much more
than the worst optimization time of the summands (because the
independent ݂ are optimized in parallel) – disproved in [DSW13]

24

Benjamin Doerr: Theory of Evolutionary Computation

Surprising: Same Runtime For Very
Different Fitness Landscapes

� Example 1: OneMax, the function counting the number of 1s in a string,
OM: 0,1 → Թ, ሺݔଵ, … , ሻݔ ↦ ∑ ݔ

ୀଵ
� unique global maximum at ሺ1, … , 1ሻ
� perfect fitness distance correlation: if a search point has higher

fitness, then it is closer to the global optimum

� Example 2: BinaryValue (BinVal or BV for short), the function mapping a
bit-string to the number it represents in binary
	BV: 0,1 → Թ, ሺݔଵ, … , ሻݔ ↦ ∑ 2ିݔ

ୀଵ
� unique global maximum at 1,… , 1
� Very low fitness-distance correlation. Example:

� BV 10…0 ൌ 2ିଵ, distance to optimum is ݊ െ 1
� BV 01…1 ൌ 2ିଵ െ 1, distance to opt. is 1

25

Benjamin Doerr: Theory of Evolutionary Computation

Insight in Working Principles
� Insight from the result:

� Even if there is a low fitness-distance correlation (as is the case for
the BinVal function), EAs can be very efficient optimizers

� Insight from the proof:

� The Hamming distance ,ݔሺܪ ሻ∗ݔ of ݔ to the optimum ݔ∗ measures
very well the quality of the search point ݔ:

� If the current search point of the (1+1) EA is ݔ, then the optimum is
found within an expected number ܧሾ ௫ܶሿ of iterations that satisfies

݁݊ ln ,ݔሺܪ ሻ∗ݔ െ ܱ ݊ ܧ ௫ܶ 4݁݊ ln ܪ2݁ ,ݔ ∗ݔ 	

independent of ݂

26

Benjamin Doerr: Theory of Evolutionary Computation

A Glimpse on a Modern Proof
� Theorem [DJW12]: For all problem sizes ݊ and all linear functions ݂: 0,1 → Թ

with ݂ ݔ ൌ ଵݔଵݓ ⋯ ݔݓ the (1+1) EA finds the optimum of ݂ in an expected
number of at most 4݁݊ lnሺ2݁݊ሻ iterations.

� 1st proof idea: Without loss, we can assume that ݓଵ ଶݓ ⋯ ݓ 0
� 2nd proof idea: Regard an artificial fitness measure!

� Define ሚ݂ ݔ ൌ ∑ 2 െ ିଵ
 ݔ	

ୀଵ “artificial weights from 1 ଵ
 to 2

� Key lemma: Consider the (1+1) EA optimizing the original ݂. Assume that
some iteration starts with the search point ݔ and ends with the random
search point ݔ′. Then

ܧ ሚ݂ሺݔ∗ሻ 	െ ሚ݂ ᇱݔ 1 െ 1
4݁݊

ሚ݂ ∗ݔ െ ሚ݂ ݔ

expected artificial fitness distance reduces by a factor of 1 െ ଵ
ସ

� 3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t.
the artificial fitness into a runtime bound
� roughly: the expected runtime is at most the number of iterations needed to

get the expected artificial fitness distance below one.

27

DJW02: Droste, Jansen, Wegener
DJW12: Doerr, Johannsen, Winzen

Benjamin Doerr: Theory of Evolutionary Computation

Multiplicative Drift Theorem
� Theorem [DJW12]: Let ܺ, ଵܺ, ܺଶ, …	 be a sequence of random variables taking

values in the set 0 ∪ 1,∞ . Let ߜ 0. Assume that for all ݐ ∈ Գ, we have
ܧ ܺ௧ାଵ 1 െ ߜ ܧ ܺ௧ .

Let ܶ ≔ min ݐ ∈ Գ	 ܺ௧ ൌ 0ሽ. Then

ܧ ܶ 1 lnܺ
ߜ .

� On the previous slide, this theorem was used with
� ߜ ൌ 1/4݁݊
� ܺ௧ ൌ ሚ݂ ∗ݔ െ ሚ݂ ሺ௧ሻݔ
� and the estimate ܺ 2݊.

� Bibliographical notes: Artificial fitness functions very similar to this ሚ݂ were
already used in [DJW02] (conference version [DJW98]). Drift analysis
(“translating progress into runtime”) was introduced to the field in [HY01] to give a
simpler proof of the [DJW02] result. A different approach was given by [Jäg08].
The multiplicative drift theorem [DJW12] (conference version [DJW10]) proves
the [DJW02] result in one page and is one of the most-used drift theorems today.

28

“Drift analysis”:
Translate expected

progress into
expected (run-)time

Benjamin Doerr: Theory of Evolutionary Computation

What is Uncool About
The Linear Functions Result?

� An unrealistically simple EA: the (1+1) EA

� Linear functions are artificial test function only

� Not a precise result, but only ܱሺ݊ log ݊ሻ in [DJW02] or a most likely
significantly too large constant in the [DJW12] result just shown

ÆWe discuss these points on the following slides

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

݂: 0,1 → Թ, ,ଵݔ … , ݔ ↦ݓݔ

ୀଵ
, ,ଵݓ … ݓ, ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.

29

Benjamin Doerr: Theory of Evolutionary Computation

Maybe Uncool: Only the Simple (1+1) EA
� This was, at that time (2002), the absolute maximum that was possible

when asking for a proven result.

� Today, we know (a little bit) more. E.g., the (1+ EA optimizes any (ࣅ
linear function in time (= number of fitness evaluations)

ܱ ݊ log ݊ ݊ߣ .
This bound is sharp for BinVal, but not for OneMax, where the
optimization time is

ܱ ݊ log ݊ 	݊ߣ ୪୭ ୪୭ ఒ୪୭ ఒ .

Æ Not all linear functions have the same optimization time! [DK15]

� We are optimistic that the theory community will make progress towards
more complicated EAs

30

Benjamin Doerr: Theory of Evolutionary Computation

Maybe Uncool: Only Linear Functions
� Again, this was the starting point. Today, we know how the (1+1) EA (and

some other algorithms) compute
� Eulerian cycles [Neu04,DHN06,DKS07,DJ07]
� shortest paths [STW04,DHK07,BBD+09]
� minimum spanning trees [NW07,DJ10,Wit14]
� and many other “easy” optimization problems

� We also have some results on approximate solutions for NP-complete
problems like partition [Wit05], vertex cover [FHH+09,OHY09], maximum
cliques [Sto06]

� We are optimistic that we will enlarge the set of problems we understand.
However, like in many fields, it is also clear that “theory will always be
behind”; that is, it will take quite some time until theoretical analyses
become available for typical algorithms used in practice and realistic real-
world problems

31

Benjamin Doerr: Theory of Evolutionary Computation

Maybe Uncool: , Large Constants
� Having only asymptotic results is a typical price for proven results (also in the

classic algorithms field).

� There is the general experience that often a proven “ܱሺ݊ log ݊ሻ” in fact means
“roughly ܿ݊ log ݊” for a small constant ܿ, which can, e.g., be obtained from
experiments

� We know more now [Wit13]: The runtime of the (1+1) EA on any linear function is
݁݊ ln ݊ ܱሺ݊ሻ, that is, at most ݁݊ ln ݊ ݊ܥ for some constant ܥ
� still an asymptotic result, but the asymptotics are only in a lower order term

� [Wit13] also has a non-asymptotic result, but it is hard to digest

32

Benjamin Doerr: Theory of Evolutionary Computation

Summary “Guided Tour”
� We have seen one of the most influential theory results: The (1+1) EA

optimizes any linear function in ܱሺ݊ log ݊ሻ iterations

� We have seen how to read and understand such a result

� We have seen why this result is important

� non-trivial and surprising

� gives insights in how EAs work

� spurred the development of many important tools (e.g., drift analysis)

� We have discussed strengths and limitations of theory results

33

Benjamin Doerr: Theory of Evolutionary Computation

Part III:

How Theory Can
Contribute to a

Better Understanding
of EAs

34

Benjamin Doerr: Theory of Evolutionary Computation

Outline for This Part
3 ways how theory can help understanding and improving EAs

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and
algorithms

3. Invent new representations, operators, and algorithms

35

Benjamin Doerr: Theory of Evolutionary Computation

Contribution 1: Debunk Misconceptions
� When working with EA, it is easy to conjecture some general rule from

observations, but (without theory) it is hard to distinguish between “we
often observe” and “it is true that”

� Reason: it is often hard to falsify a conjecture experimentally

� the conjecture might be true “often enough” or for the problems we
just have in mind, but not in general

� Danger: misconceptions prevail in the EA community and mislead the
future development of the field

� 2 (light) examples on the following slides

36

Benjamin Doerr: Theory of Evolutionary Computation

Misconception: Functions Without Local
Optima are Easy to Optimize

� A function ݂: 0,1 → Թ	has no local optima if each non-optimal search
point has a neighbor with better fitness

� if ݂(ݔ) is not maximal, then by flipping a single bit of ݔ you can get a
better solution

� Misconception: Such functions are easy to optimize…

� because already a simple hill-climber flipping single bits (randomized
local search) does the job

� Truth: There are functions ݂: 0,1 → Թ without local optima where all
reasonable EAs with high probability need time exponential in ݊ to find
even a reasonably good solution [HGD94,Rud97,DJW98]

� reason: yes, it is easy to find a better neighbor if you’re not optimal
yet, but you may need to do this an exponential number of times
because all improving paths to the optimum are that long

37

Benjamin Doerr: Theory of Evolutionary Computation

Misconception: Monotonic Functions are
Easy to Optimize for EAs

� A function ݂: 0,1 → Թ	is monotonically strictly increasing if the fitness
increases whenever you flip a 0-bit to 1

� special case of “no local optima” where each neighbor with more ones
is better

� Misconception: Such functions are easy to optimize for standard EAs…

� because already a simple hill-climber flipping single bits (randomized
local search) does the job in time ܱሺ݊ log ݊ሻ

� [DJS+13]: There is a monotonically strictly increasing function such that
with high probability the (1+1) EA with mutation probability 16/݊ needs
exponential time to find the optimum

� very different from linear functions with positive weights: ܱ ݊ log ݊ time
38

Benjamin Doerr: Theory of Evolutionary Computation

Summary Misconceptions
� Intuitive reasoning or experimental observations can lead to wrong beliefs.

� It is hard to falsify them experimentally, because

� counter-examples may be rare (so random search does not find them)

� counter-examples may have an unexpected structure

� There is nothing wrong with keeping these beliefs as “rules of thumb”, but
it is important to distinguish between what is a rule of thumb and what is a
proven fact

� Theory is the right tool for this!

39

Benjamin Doerr: Theory of Evolutionary Computation

Contribution 2: Help Designing EAs
� When designing an EA, you have to decide between a huge number of

design choices: the basic algorithm, the operators and representations,
and the parameter settings.

� Theory can help you with deep and reliable analyses of scenarios similar
to yours

� The question “what is a similar scenario” remains, but you have the
same difficulty when looking for advice from experimental research

� 2 examples:

� fitness-proportionate selection

� edge-based representations for optimization problems in graphs

40

Benjamin Doerr: Theory of Evolutionary Computation

Designing EAs:
Fitness-Proportionate Selection

� Fitness-proportionate selection has been criticized (e.g., because it is not
invariant under re-scaling the fitness), but it is still used a lot.

� Theorem [OW15]: If you use

� the Simple GA as proposed by Goldberg [Gol89] (fitness-proportionate
selection, comma selection)

� to optimize the OneMax test function ݂: 0,1 → Թ; ݔ ↦ ଵݔ ⋯ ݔ
� with a population size ݊.ଶସଽଽ or less

then with high probability the GA in a polynomial number of iterations
does not create any individual that is 1% better than a random individual

� Interpretation: Most likely, fitness-proportionate selection and comma
selection together make sense only in rare circumstances

� more difficulties with fitness-proportionate selection: [HJKN08, NOW09]

41

Benjamin Doerr: Theory of Evolutionary Computation

Designing EAs: Representations
� Several theoretical works on shortest path problems [STW04, DHK07,

BBD+09], all use a vertex-based representation:

� each vertex points to its predecessor in the path

� mutation: rewire a random vertex to a random neighbor

� [DJ10]: How about an edge-based representation?

� individuals are set of edges (forming reasonable paths)

� mutation: add a random edge (and delete the one made obsolete)

� Result: All previous algorithms become faster by a factor of ൎ మ

|ா|

� [JOZ13]: edge-based representation also preferable for vertex cover

� Interpretation: While there is no guarantee for success, it may be useful
to think of an edge-based representation for graph-algorithmic problems

42

typical theory-
driven curiosity

Benjamin Doerr: Theory of Evolutionary Computation

Contribution 3: Invent New Operators
and Algorithms

� Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms.

� Example 1: What is the right way to do mutation?

� A thorough analysis how EAs optimize jump functions suggests that
we should use mutation operators such that the Hamming distance
between parent and offspring follows a heavy-tailed distribution (and
not a binomial one)
Æ best-paper nominee in the GECCO’17 Genetic Algorithms track
[DLMN17]

� Example 2: The ሺ1 ,ߣ ߣ ሻ GA

� Invent an algorithm that truly profits also from inferior search points

43

Benjamin Doerr: Theory of Evolutionary Computation

Example 1: Invent A New Mutation Operator
� Short storyline: The recommendation to flip bits independently with

probability 1 ݊⁄ might be overfitted to ONEMAX or other unimodal
functions

� Longer storyline of this (longer) part:

� 4 young researchers ask themselves what is the right mutation rate to
optimize jump functions (which are not unimodal)

� surprise: for jump size ݉, the right mutation rate is ݉ ݊⁄ and this
speeds-up things by a factor of ݉ ݁⁄

� but: missing this optimal mutation rate by a factor of ሺ1 േ ሻߝ increases
the runtime again by a factor of at least ଵ	݁

ఌమ ହ⁄

� reason: With standard-bit mutation, the Hamming distance
between parent and offspring is strongly concentrated

� solution: design a mutation operator where this Hamming distance
follows a power-law (not strongly concentrated)

44

Benjamin Doerr: Theory of Evolutionary Computation

General Belief on Mutation
� Disclaimer: In this part, we only deal with bit-string representations, that

is, the search space is 0,1 for some ݊.

� General belief: A good way of doing mutation is standard-bit mutation,
that is, flipping each bit independently with some probability (“mut. rate”)

� global: from any parent you can generate any offspring (possibly with
very small probability) Æ algorithms cannot get stuck forever in a local
optimum (“convergence”)

� General recommendation: Use a small mutation rate like 1 ݊⁄
� nature-inspired (?)

45

Benjamin Doerr: Theory of Evolutionary Computation

Informal Justifications for
� If you want to flip a particular single bit, then

� a mutation rate of 1 ݊⁄ is the one that maximizes this probability

� reducing the rate by a factor of ܿ reduces this prob. by a factor of Θሺܿሻ
� increasing the rate by a factor of ܿ reduces this prob. by a factor of ݁ିሺሻ

� Mutation is destructive: If your current search point ݔ has a Hamming
distance ܪ ,ݔ ∗ݔ of at most ݊ 2⁄ from the optimum ݔ∗, then the offspring ݕ
has (in expectation) a larger Hamming distance and this increase is
proportional to :

� ܧ ܪ ,ݕ ∗ݔ ൌ ܪ ,ݔ ∗ݔ ሺ݊ െ ܪ2 ,ݔ ∗ݔ ሻ

46

Benjamin Doerr: Theory of Evolutionary Computation

Proven Results Supporting a Mut. Rate
� Optimal mutation rates for (1+1) EA:

�
ଵାሺଵሻ

 for OneMax [Müh92; Bäc93]

�
ൎଵ.ହଽାሺଵሻ

 for LeadingOnes [BDN10]

�
ଵାሺଵሻ

 for all linear functions [Wit13]

� monotonic functions [Jan07; DJSWZ13]:

� ൌ
 , 0 ൏ ܿ ൏ 1, gives a Θሺ݊ log ݊ሻ runtime on all monotonic functions

with unique optimum,

� ൌ ଵ
 gives ܱሺ݊ଵ.ହሻ,

� ଵ
 gives an exponential runtime on some monotonic functions.

� When ߣ ln݊, then the optimal mutation rate for the (1+λ) EA optimizing
OneMax is ଵାሺଵሻ [GW15].

47

Benjamin Doerr: Theory of Evolutionary Computation

Results With a Different Message
� For the (1+1) EA optimizing the Needle function,

� a mut. rate of 1/݊ gives a runtime of 1 െ 1 ݁⁄ ିଵ	2 ൎ 1.582 ⋅ 2

� a mut. rate of 1 2⁄ gives a runtime of 2 [GKS99]

� For the (1+1) EA optimizing the Trap function,

� a mut. rate of 1/݊ gives a runtime of Θሺ݊ሻ
� a mut. rate of 1 2⁄ gives a runtime of 2 [DJW02]

� There is a function ݂: 0,1 → Թ such that the runtime of the (1+1) EA is

� super-polynomial for ൌ ୪୭
 and ൌ ߱ ୪୭

� polynomial for ൌ ୪୭
 , ܿ any positive constant [JW00]

48

Benjamin Doerr: Theory of Evolutionary Computation

What do These Theory Results Really Say?
� When a guru tells you that some is the truly best mutation rate, then he lies.

� the example function of Jansen&Wegener is highly artificial Æ it is unlikely that
it tell us something about the real world, but it was very good to show that the
“general truths” that were around that time are not that true.

� If a function is sufficiently unsuitable for evolutionary algorithms, then you obtain a
better performance from random search (=EA with mut. rate 1 2⁄)

� Needle: no information gain until the optimum is found

� Trap: highly deceptive (higher fitness does not indicate a way towards the
optimum)

� What remains is a set of rigorous runtime analyses that prove that a mutation rate
close to 1 ݊⁄ is optimal for certain fitness functions.

Overall, theory rather supports the general recommendation to use
standard-bit mutation with mutation rate around ⁄

49

Benjamin Doerr: Theory of Evolutionary Computation

Really?
� Can we really say that 1 ݊⁄ is good (at least “usually”)?

� More provocative: Can we really say that standard-bit mutation the right
way of doing mutation?

� What made us skeptical is that all results supporting standard-bit
mutation with rate 1 ݊⁄ regard easy unimodal optimization problems
(where flipping single bits is a very good way of making progress)

� OneMax, LeadingOnes, linear functions, monotonic functions

� Plan for the next few slides:

� regard ܯܷܬ ܲ, functions (not unimodal)

� observe something very different

� design a new mutation operator

� show that it is pretty good for many problems
50

Benjamin Doerr: Theory of Evolutionary Computation

Main Object of This Study: Jump Functions
Jump functions [DJW02]:

� ܯܷܬ ܲ,: fitness of an ݊-bit string ݔ is the number ݔ ଵ of ones, except if
ݔ ଵ ∈ ݊ െ ݉ 1,… , ݊ െ 1 , then the fitness is the number of zeroes.

� Observations:

� All ݔ with ݔ ଵ ൌ ݊ െ݉ form an easy to reach local optimum.

� From there, only flipping (the right) ݉ bits gives an improvement.

� The unique global optimum is ݔ∗ ൌ ሺ1…1ሻ.
51

݊/2 ݊ െ ݉ ݊
ݔ ଵ

Benjamin Doerr: Theory of Evolutionary Computation

Runtime Analysis
� Theorem: Let ܶ ݉, ݊ denote the expected optimization time of the (1+1)

EA optimizing ܯܷܬ ܲ, with mutation rate 1 2⁄ . For 2 ݉ ݊ 2⁄ ,

ܶ ݉, ݊ ൌ Θ ି 1 െ ି .

� Corollary (speed-up at least exponential in ݉): For any ∈ ሾ2 ݊⁄ ,݉ ݊⁄ ሿ,
ܶ ݉, ݊ 6݁ଶ	2ି	 ଵܶ ⁄ ݉, ݊ .

� Æ Clearly, here ⁄ is not a very good mutation rate!

� Proof of theorem (not overly difficult):

� upper bound: classic fitness level method

� lower bound: argue that the runtime is essentially the time it takes to
go from the local to the global optimum

52

here and later: all implicit
constants indep. of ݊ and ݉

Benjamin Doerr: Theory of Evolutionary Computation

Optimal Mutation Rates

� Theorem: Let ܶ௧ ݉, ݊ ≔ inf ܶ ݉, ݊ 	 	 ∈ ሾ0, 1 2⁄ ሿ .

� ܶ௧ ݉, ݊ ൌ Θ ܶ ⁄ ݉, ݊ .

� If ሺ1 ሻሺ݉ߝ ݊⁄ ሻ or 1 െ ߝ ሺ݉ ݊⁄ ሻ, then

ܶ ݉, ݊ 1
6 	exp

ଶߝ	݉
5 	 ܶ௧ ݉, ݊ .

� In simple words: ݉ ݊⁄ is essentially the optimal mutation rate, but a small
deviation from it increases the runtime massively.

� Æ Dilemma: To find a good mutation rate, you have to know how many
bits you need to flip /

� Reason for the dilemma: When flipping bits independently at random
(standard-bit mutation), then the Hamming distance ܪሺݔ, ሻݕ of parent and
offspring is strongly concentrated around the mean

� Æ exponential tails of the binomial distribution

� Æ Maybe standard-bit mutation is not the right thing to do?
53

Benjamin Doerr: Theory of Evolutionary Computation

Solution: Heavy-tailed Mutation
� Recap: What do we need?

� No strong concentration of ܪሺݔ, ሻݕ
� Larger numbers of bits flip with reasonable probability

� 1-bit flips occur with constant probability (otherwise the friends of
OneMax boycott our solution)

� Solution: Heavy-tailed mutation (with parameter ߚ 1, say ߚ ൌ 1.5)

� choose ߙ ∈ ሼ1, 2, … , ݊ 2⁄ ሽ randomly with Pr ߙ ∼ ఉିߙ [power-law distrib.]

� perform standard-bit mutation with mutation rate ߙ ݊⁄

� Some maths: The probability to flip ݇ bits is Θ ݇ିఉ

� Æ no exponential tails -

� Pr ܪ ,ݔ ݕ ൌ 1 ൌ Θሺ1ሻ, e.g., ൎ32% for ߚ ൌ 1.5 (ൎ37% for classic mut.)

54

Benjamin Doerr: Theory of Evolutionary Computation

Heavy-tailed Mutation: Results
� Theorem: The (1+1) EA with heavy-tailed mutation (ߚ 1) has an

expected optimization time on ܯܷܬ ܲ, of

ܱ ݉ఉି.ହ	 ܶ௧ ݉, ݊ .	

� This one algorithm for all is only an ࡻሺିࢼ.ሻ factor slower than
the EA using the (for this) optimal mutation rate!

� Compared to the classic EA, this is a speed-up by a factor of ݉ሺሻ.

� Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than
Θሺ݉.ହሻ – by taking ߚ ൌ 1 ߝ – is unavoidable:

� For ݊ sufficiently large, any distribution ܦ on the mutation rates in ሾ0, 1 2⁄ ሿ has an
݉ ∈ ሾ2. . ݊ 2⁄ ሿ such that ܶ ݉, ݊ ݉	 ܶ௧ሺ݉, ݊ሻ.

� But let’s go back to understanding what we can gain from the heavy-
tailed mutation operator…

55

Benjamin Doerr: Theory of Evolutionary Computation

Experiments (m=8, n=20..150)

56

Runtime of the (1+1) EA on ଼ܲܯܷܬ , (average over 1000 runs). To allow this number of
experiments, the runs where stopped once the local optimum was reached and the remaining
runtime was sampled directly from the geometric distribution describing this waiting time.

Benjamin Doerr: Theory of Evolutionary Computation

Beyond Jump Functions
� The “only” reason for these speed-ups is that we increase the probability

for a ݇-bit flip from roughly ଵ
⋅! to roughly ݇ିఉ.

� Hence it is fair to suspect that similar advantages are also observed
for other problems where multi-bit flips are useful.

� Example (maximum matching): Let ܩ be an undirected graph having ݊
edges. A matching is a set of non-intersecting edges. Let ܱܲܶ be the size
of a maximum matching. Let ݉ ∈ Գ be constant and ߝ ൌ ଶ

ଶାଵ.

� The classic (1+1) EA finds a matching of size ை்ଵାఌ in an expected
number of at most ܶ,ఌ iterations, where ܶ,ఌ is some number in
Θሺ݊ଶାଶሻ. [GW03]

� The (1+1) EA with heavy-tailed mutation does the same in expected
time of at most 1 1 ߞ	݁	 ߚ

݉ఉି.ହ		 ܶ,ఌ.

57
Riemann zeta function:
ߞ ߚ ൏ 2.62 for ߚ 1.5

Benjamin Doerr: Theory of Evolutionary Computation

Performance in Classic Results
� Since the heavy-tailed mutation operator flips any constant number of

bits with constant probability, many classic results for the standard (1+1)
EA remain valid (apart from constant factor changes):

� ܱሺ݊ log ݊ሻ runtime on OneMax

� ܱሺ݊ଶሻ runtime on LeadingOnes

� ܱ ݉ଶ log ௫ݓ݊ runtime on MinimumSpanningTree [NW07]

� and many others…

� The largest expected runtime that can occur on an ݂: 0,1 → Թ is

� Θሺ݊ሻ for the classic (1+1) EA [DJW02 (Trap); Wit05 (minimum
makespan scheduling)]

� ܱሺ݊ఉ	2ሻ for the heavy-tailed (1+1) EA

58

Benjamin Doerr: Theory of Evolutionary Computation

Key Working Principle of HT-Mutation
� Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

� Distribute this free probability mass in a power-law fashion on all other
݇-bit flips
Æ increases the prob. for a ݇-bit flip from roughly ଵ

⋅! to roughly ݇ିఉ
Æ reduces the waiting time for a ݇-bit flip from ݁ ⋅ ݇! to ݇ఉ

� This redistribution of probability mass is a good deal, because we
usually spend much more time on finding a good multi-bit flip

� ܯܷܬ ܲ,: spend Θሺ݊ log ݊ሻ time on all 1-bit flips, but ݊
݉ time to find

the one necessary ݉-bit flip

� These elementary observations are a good reason to believe that
heavy-tailed mutation is advantageous for a wide range of multi-modal
problems.

59

Benjamin Doerr: Theory of Evolutionary Computation

Side Remark: Heavy-tailed -Bit Flips
� We built on standard-bit mutation, but (of course) you can also build on

݇-bit flips: Choose ݇ according to a power-law and flip ݇ bits.

� Caveat: Choose ݇ ∈ ሾ0. . ݊ሿ, not ߙ ∈ ሾ1. . ݊ 2⁄ ሿ to obtain globality

� Strange effect: The probability of obtaining the inverse search-point
is overly high (Θሺ݊ିఉሻ) Æ polynomial runtime on Trap

� Implementation of ݇-bit flips for large ݇?

60

Benjamin Doerr: Theory of Evolutionary Computation

“Fast”
� Heavy-tailed mutation has been experimented with in continuous

optimization (with mixed results as far as I understand)

� simulated annealing [Szu, Hartley ‘87]

� evolutionary programming [Yao, Lui, Lin ‘99]

� evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger,
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

� estimation of distribution algorithms [Posik ’09, ‘10]

� Algorithms using heavy-tailed mutation were called fast by their
inventors, e.g., fast simulated annealing.

� Æ we propose to call our mutation fast mutation and the resulting
EAs fast, e.g., 1 1 ఉܣܧܨ	

61

Benjamin Doerr: Theory of Evolutionary Computation

Practical Experience
� Most interesting question: How does this work for real problems?

� Markus Wagner (personal communication): very preliminary
experiments for the travelling thief problem

� “surprisingly good results for a first non-optimized try”

� Mironovich, Budalov ’17: Solid experiments for a test case generation
problem

� HT mutation significantly beats classic mutation-based approaches

� HT mutation slows down the best-so-far crossover-based approach
Æ crossover served already to generate far offspring?

� More experience needed: You can help us a lot by simply taking your
favorite discrete problem and replacing classic mutation with the heavy-
tailed mutation operator!

62

Benjamin Doerr: Theory of Evolutionary Computation

Summary Fast Mutation
� Doing standard-bit mutation with rate 1 ݊⁄ might be over-fitted to OneMax

and similar problems where one-bit flips make you happy.

� For multi-modal landscapes (where more-bit flips are necessary), higher
mutation rates are better

� Æ get rid of the ൎ ݁݇! waiting time for a ݇-bit flip

� Our heavy-tailed mutation operator gives all ݇-bit flips a Θሺ݇ఉሻ waiting time

� ݉ሺሻ factor speed-up for ܯܷܬ ܲ,

� ݉ሺሻ factor improvement of the runtime guarantee for max. matching

� first promising experimental results

� Is our heavy-tailed mutation operator is natural ?

63

Benjamin Doerr: Theory of Evolutionary Computation

Example 2: Invent New Algorithms (1/3)
� Theory can also, both via the deep understanding gained from proofs

and by “theory-driven curiosity” invent new operators and algorithms.
Here is one recent example:

� Theory-driven curiosity: Explain the following dichotomy!

� the theoretically best possible black-box optimization algorithm ࣛ∗ for
OneMax (and all isomorphic fitness landscapes) needs only
ܱሺ݊ log ݊⁄ ሻ fitness evaluations

� all known (reasonable) EAs need at least ݊ ⋅ ln ݊ fitness evaluations

� One explanation (from looking at the proofs): ࣛ∗ profits from all search
points it generates, whereas most EAs gain significantly only from search
points as good or better than the previous-best

� Can we invent an EA that also gains from inferior search points?

� YES [DDE13,GP14,DD15a,DD15b,Doe16,BD17], see next slides

64

Benjamin Doerr: Theory of Evolutionary Computation

New Algorithms (2/3)
� A simple idea to exploit inferior search points (in a (1+1) fashion):

1. create ߣ mutation offspring from the parent by flipping ߣ random bits

2. select the best mutation offspring (“mutation winner”)

3. create ߣ crossover offspring via a biased uniform crossover of
mutation winner and parent, taking bits from mutation winner with
probability 1 ⁄ߣ only

4. select the best crossover offspring (“crossover winner”)

5. elitist selection: crossover winner replaces parent if not worse

� Underlying idea:

� If ߣ is larger than one, then the mutation offspring will often be much
worse than the parent (large mutation rates are destructive)

� However, the best of the mutation offspring may have made some
good progress (besides all destruction)

� Crossover with parent repairs the destruction, but keeps the progress
65

Benjamin Doerr: Theory of Evolutionary Computation

New Algorithms (3/3)
� Performance of the new algorithm, called (1+(ߣ,ߣ)) GA:

� solves OneMax in time (=number of fitness evaluations)
ܱ ୪୭

ఒ ݊ߣ , which is ܱሺ݊	 log ݊	ሻ for ߣ ൌ log ݊
� the parameter ߣ can be chosen dynamically imitating the 1/5th rule,

this gives an ܱ(݊) runtime

� experiments:

� these improvements are visible already for small values of ߣ and
small problem sizes ݊

� [GP14]: good results for satisfiability problems

� Interpretation: Theoretical considerations can suggest new algorithmic
ideas. Of course, much experimental work and fine-tuning is necessary
to see how such ideas work best for real-world problems.

66

Benjamin Doerr: Theory of Evolutionary Computation

Summary Part 3
Theory has contributed to the understanding and use of EAs by

� debunking misbeliefs (drawing a clear line between rules of thumb and
proven fact)

� e.g., “no local optima” does not mean “easy”

� giving hints how to choose parameters, representations, operators, and
algorithms

� e.g., how useful is crossover when we hardly find an example where
is provably improves things?

� inventing new representations, operators, and algorithms; this is fueled
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

67

Benjamin Doerr: Theory of Evolutionary Computation

Part IV:

Current Topics of
Interest

in Theory of EC

68

Benjamin Doerr: Theory of Evolutionary Computation

What We Currently Try to Understand
� Precise runtime guarantees
� Dynamic/adaptive parameter choices
� Population-based EAs
� Dynamic optimization, noisy environments
� Non-elitism
� Black-box complexity

� Examples for all will be given on the next slides.

� Parallel to these topics, we study also methodical questions
(e.g., drift analysis), but these are beyond the scope of this tutorial

69

Benjamin Doerr: Theory of Evolutionary Computation

Precise Runtime Guarantees
� Theory results can give advice on how to chose the parameters of an EA

� Example: the discussion on optimal mutation rates in part III

� The more precisely we know the runtime (e.g., upper and lower bounds
for its expected value), the more precise recommendations we can give
for the right parameter choice (e.g., ݉ ݊⁄ instead of Θሺ݉ ݊⁄ ሻ)
� in practice, constant factors matter -

� Challenge: For such precise runtime bounds often the existing
mathematical tools are insufficient

� in particular, tools from classic algorithms theory are often not strong
enough, because in that community (for several good reasons) there
is no interest in bounds more precise than ܱሺ… ሻ.

70

Benjamin Doerr: Theory of Evolutionary Computation

Dynamic Parameter Choices
� Instead of fixing a parameter (mutation rate, population size, …) once

and forever (static parameter choice), it might be preferable to use
parameter choices that change
� depending on time
� depending on the current state of the population
� depending on the performance in the past

� Hope:
� different parameter settings may be optimal early and late in the

optimization process
� with self-adjusting parameters, we do not need to know the optimal

parameters beforehand, but the EA finds them itself

� Experimental work suggests that dynamic parameter choices often
outperform static ones (for surveys see [EHM99,KHE15])

71

Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Deterministic Schedules

� Deterministic variation schedule for the mutation rate [JW00, JW06]:

� Toggle through the mutation rates ଵ ,
ଶ
 ,

ସ
 , … , ൎ

ଵ
ଶ

� Result: There is a function where this dynamic EA takes time
ܱሺ݊ଶ log ݊ሻ, but any static EA takes exponential time

� For most functions, the dynamic EA is slower by a factor of log ݊

72

Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Depending on the Fitness

� Fitness-dependent mutation rate [BDN10]: When optimizing the
LeadingOnes test function ܱܮ: 0,1 → ሼ0,… , ݊ሽ with the (1+1) EA

� the fixed mutation rate ൌ ଵ
 gives a runtime of ൎ 0.86	݊ଶ

� the fixed mutation rate ൌ ଵ.ହଽ
 gives ൎ 0.77	݊ଶ (optimal fixed mut. rate)

� the mutation rate ൌ
ࢌ ࢞ ା, gives ൎ 0.68	݊ଶ (optimal dyn. mut. rate)

� Fitness-dependent offspring pop. size for the ሺ1 ,ߣ ߣ ሻ GA [DDE13]:

� if you choose ࣅ ൌ
ሻ, then the optimization time on OneMax࢞ሺࢌି drops

from roughly ݊ log ݊ to ܱ ݊

� Interpretation: Fitness-dependent parameters can pay off. It is hard to find
the optimal dependence, but others give improvements as well (Æ proofs)

73

Benjamin Doerr: Theory of Evolutionary Computation

Theory for Dynamic Parameter Choices:
Success-based Dynamics

� Success-based choice of island number: You can reduce of the parallel
runtime (but not the total work) of an island model when choosing the
number of islands dynamically [LS11]:
� double the number of islands after each iteration without fitness gain
� half the number of islands after each improving iteration

� A success-based choice (1/5-th rule) of ߣ in the (1+(ߣ,ߣ)) GA automatically
finds the optimal mutation strength [DD15a]
� ߣ ≔ రܨ ߣ	 after each iteration without fitness gain, ܨ 1 a constant
� ߣ ߣ	≕ ⁄ܨ after each improving iteration
� Important that ܨ is not too large and that the fourth root is taken

(Æ 1/5-th rule). The doubling scheme of [LS11] would not have worked

� Simple mechanisms to automatically find the current-best parameter
setting (note: this is great even when the optimal parameter does not
change over time)

74

Benjamin Doerr: Theory of Evolutionary Computation

Example Run Self-Adjusting GA

75

∗ࣅ ൌ
 െ ሻ࢞ሺࢌ

Benjamin Doerr: Theory of Evolutionary Computation

Summary Dynamic Parameter Choices
� State of the art: A growing number of results, some very promising

� personal opinion: this is the future of discrete EC, as it allows to
integrate very powerful natural principles like adaption and learning

76

An extension of the classi-
fication of Eiben, Hinterding,
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,DDE13]

[DL16]

[LS11,DD15a,DDK16,DDY16]

Benjamin Doerr: Theory of Evolutionary Computation

Population-Based EAs
� Population-based: using a non-trivial (2) population of individuals

� In practice, non-trivial populations are often employed

� In theory,

� no convincing evidence (yet) that larger populations are generally
beneficial (apart from making the algorithm easy to run on parallel
machines)

� the typical result is “up to a population size of …, the total work is
unchanged, for larger population sizes, you pay extra”

� some evidence (on the level of artificially designed examples) that
populations help in dynamic or noisy settings

� not many methods to deal with the complicated population dynamics

� Big open problem: Give rigorous advice how to profitably use larger
populations (apart allowing parallel implementations)

� and devise methods to analyze such algorithms
77

Benjamin Doerr: Theory of Evolutionary Computation

Dynamic Optimization
� Dynamic optimization: Optimization under (mildly) changing problem data

� Question: How well do EAs find and track the moving optimum?

� First theory result [Dro02]: dynamic version of OneMax where the
optimum changes (by one bit) roughly every ܭ iterations

� If ܭ ൌ ݊ log ݊⁄ or larger, then a polynomial number of iterations
suffices to find or re-find the current optimum

� ܭ can be quite a bit smaller than the usual ݁݊ ln ݊ runtime!

� First indication that EAs do well in dynamic optimization

� More recent results: Many (artificial) examples showing that populations,
diversity mechanisms, island models, or ant colonies help finding or
tracking dynamically changing optima [JS05,KM12,OZ15,LW14,LW15,…]

� Two main open problems: (i) What are realistic dynamic problems?

� (ii) What is the best way to optimize these?

78

Benjamin Doerr: Theory of Evolutionary Computation

Non-Elitism
� Most EAs analyzed in theory use truncation selection, which is an elitist

selection = you cannot lose the best-so-far individual

� Mostly negative results on non-elitism are known. For example, [OW15]
proves that the Simple Genetic Algorithm using fitness-proportional
selection is unable to optimize OneMax efficiently [see above]

� Strong Selection Weak Mutation (SSWM) algorithm [PPHST15], inspired
by an inter-disciplinary project with populations-genetics:
� worsening solutions are accepted with some positive probability
� for improving offspring, acceptance rate depends on the fitness gain
� Examples are given in [PPHST15] for which SSWM outperforms

classic EAs

� Black-box complexity view: there are examples where any elitist
algorithm is much worse than a non-elitist algorithm [DL15]

� State of the art: Not much real understanding apart from sporadic results.
The fact that non-elitism is used a lot in EC practice asks for more work.

79

Benjamin Doerr: Theory of Evolutionary Computation

Limits of EC: Black-Box Complexity
� EAs are black-box algorithms: they learn about the problem at hand only

by evaluating possible solutions

� What is the price for such a problem-independent approach?
ÆThis is the main question in black-box complexity.

� In short, the black-box complexity of a problem is the minimal number of
function evaluations that are needed to solve it

� = performance of the best-possible black-box algorithm

80

Algorithm

ሺ࢞, ሻሻ࢞ሺࢌ
ሺ࢟, ሻሻ࢟ሺࢌ

ࢠ

ሻࢠሺࢌ

Benjamin Doerr: Theory of Evolutionary Computation

Black-Box Complexity Insights
� Unified lower bounds: The black-box complexity is a lower bound for the

runtime of any black-box algorithm: all possible kinds of EAs, ACO, EDA,
simulated annealing, …

� Specialized black-box models allow to analyze the impact of algorithmic
choices such as type of variation in use, the population size, etc.

� Example result: [LW12] proves that every unary unbiased algorithm
needs Ω ݊ log ݊ function evaluations to optimize OneMax
� unary: mutation only, no crossover
� unbiased: symmetry in

� bit-values 0 and 1
� bit positions 1,2,…,݊

Æ Result implies that algorithms using fair mutation as only variation
cannot be significantly more efficient on OneMax than the (1+1) EA

81

Benjamin Doerr: Theory of Evolutionary Computation

Black-Box Complexity vs. Games –
Where EA Theory Meets Classic CS

� Black-box algorithms are strongly related to Mastermind-like guessing
games:
� algorithm guesses a search point
� opponent reveals the fitness

� Such guessing games have a long history in
classic computer science due to applications
in security and privacy

� We have several (hidden) black-box complexity
publications in classic CS venues (including a
paper to appear in the Journal of the ACM)
� EC theory meets classic theory
� a chance to get the classic CS community interested in our field!

82

Benjamin Doerr: Theory of Evolutionary Computation

Part V:

Conclusion

83

Benjamin Doerr: Theory of Evolutionary Computation

Summary
� Theoretical research gives deep insights in the working principles of EC,

with results that are of a different nature than in experimental work

� “very true” (=proven), but often apply to idealized settings only

� for all instances and sizes, …, but sometimes less precise

� often only asymptotic results instead of absolute numbers

� proofs tell us why certain facts are true

� The different nature of theoretical and experimental results implies that
a real understanding is best obtained from a combination of both

� Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms

84

Benjamin Doerr: Theory of Evolutionary Computation

How to Use Theory in Your Work?
� Try to read theory papers, but don’t expect more than from other papers

� Neither a theory nor an experimental paper can tell you the best
algorithm for your particular problem, but both can suggest ideas

� Try “theory thinking”: take a simplified version of your problem and
imagine what could work and why

� Don’t be shy to talk to the theory people!

� they will not have the ultimate solution and their mathematical
education makes them very cautious presenting an ultimate solution

� but they might be able to prevent you from a wrong path or suggest
alternatives to your current approach

85

Benjamin Doerr: Theory of Evolutionary Computation

Recent Books (Written for Theory People,
But Not Too Hard to Read)

� Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

� Jansen (2013). Analyzing Evolutionary Algorithms, Springer

� Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization,
Springer

86

Benjamin Doerr: Theory of Evolutionary Computation

Acknowledgments
� This tutorial is also based upon work from COST Action CA15140

`Improving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice (ImAppNIO)' supported by COST (European
Cooperation in Science and Technology).

87

Benjamin Doerr: Theory of Evolutionary Computation 88

Thanks for your attention!

Benjamin Doerr: Theory of Evolutionary Computation

Appendix A

Glossary of Terms
Used in This Tutorial

89

Benjamin Doerr: Theory of Evolutionary Computation

Discrete and Pseudo-Boolean Optimization
In this tutorial we are mostly interested in the optimization of problems of the
type ݂: 0,1 → Թ
� Problems ݂: ܵ → Թ with finite search space ܵ are called discrete

optimization problems
(in contrast to continuous problems ݂:Թ → Թ or, more generally
݂: ܵ → Թ with continuous ܵ)

� When ܵ ൌ 0,1 and ݂: 0,1 → Թ, we call ݂ a pseudo-Boolean function

� Please note: don’t get fooled! Even if optimizing a function ݂: 0,1 → Թ
may look harmless, a HUGE range of problems (even NP-hard ones like
Max-SAT and many others!) can be expressed this way

90

Benjamin Doerr: Theory of Evolutionary Computation

What we Mean by “Optimization”
� Recall: we assume that we aim at optimizing a function ݂: 0,1 → Թ
� For this tutorial “optimization” = maximization,

that is, we aim at finding a bit string ݔ ൌ ,ଵݔ … , ݔ such that ݂ ݔ ݂ ݕ
for all ݕ ∈ 0,1

� Note in particular: we are not interested in this tutorial in identifying local
optima, only the global best solution(s) are interesting for us

91

local optima

Global optimum

Benjamin Doerr: Theory of Evolutionary Computation

Expected Runtimes – Introduction
� All EAs are randomized algorithms, i.e., they use random decisions

during the optimization process (for example, the variation step, i.e., the
step in which new search points are generated, is often based on random
decisions---we will discuss this in more detail below)

� Our object of interest, the runtime of EAs, is the number of function
evaluations that an EA needs until it queries for the first time an optimal
solution. Since EAs are randomized algorithms, their runtime is a random
variable

92

Benjamin Doerr: Theory of Evolutionary Computation

Expected Runtimes – Definition
� Formally, let ܣ be an EA, let ݂ be a function to be optimized and let

,ଵݔ ,ଶݔ … be the series of search points queried by ܣ in one run of
optimizing ݂. The search points ݔ are random and so is the series of
fitness values ݂ ଵݔ , ݂ ଶݔ , …. The runtime ܶ is defined by

ܶ ≔ min ݅ ∈ Գ ݂ ݔ ൌ max
௬∈ ,ଵ 	݂ ݕ

� Several features of this random variable are interesting. We mostly care
about the expected runtime of an EA. This number is the average
number of function evaluations that are needed until an optimal solution
is evaluated for the first time.

� Caution (1/2): sometimes runtime is measured in terms of generations,
not function evaluations

� Caution (2/2): Regarding expectation only can be misleading (see next
slide for an example), this is why we typically study also other features of
the runtime, such as its concentration

93

Benjamin Doerr: Theory of Evolutionary Computation

Expected Runtimes – Caution!
� The expected runtime does not always tell you the full truth:

There are functions for which the expected runtime is very large but
which can be optimized in a small number of steps with a fair probability.
Example: The DISTANCE function regarded in [DJW02], see next slide

94

Benjamin Doerr: Theory of Evolutionary Computation

Expected Runtimes – Caution!

95

Formally,

Distance ݔ ≔ ݔ
ୀଵ,…,

െ ݊
2 െ

1
3

ଶ

We regard a simple hill climber
(Randomized Local Search, RLS)
which is

� initialized uniformly at random,

� flips one bit at a time,

� always accepts search points of
best-so-far fitness

With probability (almost) 1/2, the
algorithm has optimized DISTANCE

after ܱ ݊ log ݊ steps

With probability ~1/2 it does not find
the optimum at all, thus having an
infinite expected optimization time

Benjamin Doerr: Theory of Evolutionary Computation

Big-O Notation, aka Landau Notation (1/2)
� The “big-O” notation is used in algorithms theory to classify the order at

which the running time of an algorithm grows with the size of the input
problems

� In our example, it says that “The expected runtime of the (1+1) EA on
any linear function with weights ് 0 is Θሺ݊	log	݊ሻ.”

� Θ ݊	log	݊ means that the expected runtime of the (1+1) EA on ݂ is

� ܱ ݊ log ݊ , that is, there exists a constant ܥ 0 such that for all ݊ the
expected runtime is at most ݊ܥ log ݊

� Ω ݊ log ݊ , that is, there exists a constant ܿ 0 such that for all ݊ the
expected runtime is at least ܿ݊ log ݊

� That is, there exist constants 0 ൏ ܿ ൏ ܥ such that
ܿ݊ log ݊ ሺܶܧ ଵାଵ ா,ሻ ݊ܥ log ݊

96

Benjamin Doerr: Theory of Evolutionary Computation

Big-O Notation, aka Landau Notation (2/2)
Further frequently used notation

� ݂ ∈ ሺ݊ሻ if ݂ grows slower than linear. Formally:
for all constants 0 ൏ ܿ there exists a ݊ such that for all ݊ ݊: ݂ ݊ ܿ݊

� ݂ ∈ ߱ሺ݊ሻ if ݂ grows faster than linear. Formally:
for all constants 0 ൏ ܿ there exists a ݊ such that for all ݊ ݊: ݂ ݊ ܿ݊

97

Benjamin Doerr: Theory of Evolutionary Computation

Appendix B

List of References

98

References

[AD11] Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics. World Scientific, 2011.

[Bäc93] Thomas Bäck. Optimal mutation rates in genetic search. In Stephanie Forrest, editor, Proc. of International Conference
on Genetic Algorithms (ICGA), pages 2–8. Morgan Kaufmann, 1993.

[BBD+09] Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Kurur, and Frank Neumann. Comput-
ing single source shortest paths using single-objective fitness functions. In Proc. of Foundations of Genetic Algorithms
(FOGA), pages 59–66. ACM, 2009.

[BD17] Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the (1 + (�,�)) genetic algorithm on random satisfiable 3-cnf
formulas. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 2017. Full version available at
http://arxiv.org/abs/1704.04366.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and adaptive mutation rates for the LeadingOnes
problem. In Proc. of Parallel Problem Solving from Nature (PPSN), pages 1–10. Springer, 2010.

[DD15a] Benjamin Doerr and Carola Doerr. Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete
settings. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1335–1342. ACM, 2015.

[DD15b] Benjamin Doerr and Carola Doerr. A tight runtime analysis of the (1+(�, �)) genetic algorithm on OneMax. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO), pages 1423–1430. ACM, 2015.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-box complexity to designing new genetic algorithms.
Theoretical Computer Science, 567:87–104, 2015.

[DDY16] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise black-box analysis. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO), pages 1123–1130. ACM, 2016.

[DHK07] Benjamin Doerr, Edda Happ, and Christian Klein. A tight analysis of the (1+1)-EA for the single source shortest path
problem. In Proc. of Congress on Evolutionary Computation (CEC), pages 1890–1895. IEEE, 2007.

[DHK08] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evolutionary computation. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO), pages 539–546. ACM, 2008.

B. Doerr: Theory of Evolutionary Computation 99

http://arxiv.org/abs/1704.04366

[DHN06] Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann. Speeding up evolutionary algorithms through restricted mutation
operators. In Proc. of Parallel Problem Solving from Nature (PPSN), volume 4193 of Lecture Notes in Computer Science,
pages 978–987. Springer, 2006.

[DJ07] Benjamin Doerr and Daniel Johannsen. Adjacency list matchings: an ideal genotype for cycle covers. In Proc. of Genetic
and Evolutionary Computation Conference (GECCO), pages 1203–1210. ACM, 2007.

[DJ10] Benjamin Doerr and Daniel Johannsen. Edge-based representation beats vertex-based representation in shortest path
problems. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 758–766. ACM, 2010.

[DJK+11] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Per Kristian Lehre, Markus Wagner, and Carola Winzen. Faster black-
box algorithms through higher arity operators. In Proc. of Foundations of Genetic Algorithms (FOGA), pages 163–172.
ACM, 2011.

[DJK+13] Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, and Madeleine Theile. More effective crossover
operators for the all-pairs shortest path problem. Theoretical Computer Science, 471:12–26, 2013.

[DJS+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges. Mutation rate matters even when
optimizing monotonic functions. Evolutionary Computation, 21:1–27, 2013.

[DJW98] Stefan Droste, Thomas Jansen, and Ingo Wegener. A rigorous complexity analysis of the (1 + 1) evolutionary algorithm
for separable functions with Boolean inputs. Evolutionary Computation, 6:185–196, 1998.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[DJW10] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO), pages 1449–1456. ACM, 2010.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. Algorithmica, 64:673–697, 2012.

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear functions with the (1+�) evolutionary algorithm - different
asymptotic runtimes for different instances. Theoretical Computer Science, 561:3–23, 2015.

[DKS07] Benjamin Doerr, Christian Klein, and Tobias Storch. Faster evolutionary algorithms by superior graph representation. In
Proc. of Symposium on Foundations of Computational Intelligence (FOCI), pages 245–250. IEEE, 2007.

B. Doerr: Theory of Evolutionary Computation 100

[DL15] Carola Doerr and Johannes Lengler. Elitist black-box models: Analyzing the impact of elitist selection on the performance
of evolutionary algorithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 839–846.
ACM, 2015.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic algorithms. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO). ACM, 2017. Full version available at http://arxiv.org/abs/1703.03334.

[Doe16] Benjamin Doerr. Optimal parameter settings for the (1 + (�,�)) genetic algorithm. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO), pages 1107–1114. ACM, 2016. Full version available at http://arxiv.org/abs/1604.
01088.

[dPdLDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. Money for nothing: Speeding up evolutionary algorithms
through better initialization. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 815–822.
ACM, 2015.

[Dro02] Stefan Droste. Analysis of the (1+1) EA for a dynamically changing OneMax-variant. In Proc. of Congress on Evolutionary
Computation (CEC), pages 55–60. IEEE, 2002.

[DSW13] Benjamin Doerr, Dirk Sudholt, and Carsten Witt. When do evolutionary algorithms optimize separable functions in parallel?
In Proc. of Foundations of Genetic Algorithms (FOGA), pages 51–64. ACM, 2013.

[DT09] Benjamin Doerr and Madeleine Theile. Improved analysis methods for crossover-based algorithms. In Proc. of Genetic
and Evolutionary Computation Conference (GECCO), pages 247–254. ACM, 2009.

[EHM99] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 3:124–141, 1999.

[FHH+09] Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. Analyses of simple hybrid algorithms for
the vertex cover problem. Evolutionary Computation, 17:3–19, 2009.

[FM92] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the building block hypothesis. In Proc. of
Foundations of Genetic Algorithms (FOGA), pages 109–126. Morgan Kaufmann, 1992.

[FW04] Simon Fischer and Ingo Wegener. The Ising model on the ring: Mutation versus recombination. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO), volume 3102 of Lecture Notes in Computer Science, pages 1113–1124.
Springer, 2004.

B. Doerr: Theory of Evolutionary Computation 101

http://arxiv.org/abs/1703.03334
http://arxiv.org/abs/1604.01088
http://arxiv.org/abs/1604.01088

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting times for binary mutations. Evolutionary Computa-
tion, 7:173–203, 1999.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Pub-
lishing Co., Inc., 1989.

[GP14] Brian W. Goldman and William F. Punch. Parameter-less population pyramid. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO), pages 785–792. ACM, 2014.

[GW15] Christian Gießen and Carsten Witt. Population size vs. mutation strength for the (1+�) EA on OneMax. In Proc. of Genetic
and Evolutionary Computation Conference (GECCO), pages 1439–1446. ACM, 2015.

[HGAK06] Nikolaus Hansen, Fabian Gemperle, Anne Auger, and Petros Koumoutsakos. When do heavy-tail distributions help? In
Proc. of Parallel Problem Solving from Nature (PPSN), volume 4193 of Lecture Notes in Computer Science, pages 62–71.
Springer, 2006.

[HGD94] Jeff Horn, David Goldberg, and Kalyan Deb. Long path problems. In Proc. of Parallel Problem Solving from Nature (PPSN),
volume 866 of Lecture Notes in Computer Science, pages 149–158. Springer, 1994.

[HJKN08] Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analyses of fitness-proportional selection
for optimizing linear functions. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 953–960.
ACM, 2008.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence, 127:57–
85, 2001.

[Jäg08] Jens Jägersküpper. A blend of Markov-chain and drift analysis. In Proc. of Parallel Problem Solving from Nature (PPSN),
volume 5199 of Lecture Notes in Computer Science, pages 41–51. Springer, 2008.

[Jan07] Thomas Jansen. On the brittleness of evolutionary algorithms. In Christopher R. Stephens, Marc Toussaint, L. Darrell
Whitley, and Peter F. Stadler, editors, Proc. of Foundations of Genetic Algorithms (FOGA), volume 4436 of Lecture Notes
in Computer Science, pages 54–69. Springer, 2007.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms—The Computer Science Perspective. Springer, 2013.

B. Doerr: Theory of Evolutionary Computation 102

[JOZ13] Thomas Jansen, Pietro Simone Oliveto, and Christine Zarges. Approximating vertex cover using edge-based representa-
tions. In Proc. of Foundations of Genetic Algorithms (FOGA), pages 87–96. ACM, 2013.

[JS05] Thomas Jansen and Ulf Schellbach. Theoretical analysis of a mutation-based evolutionary algorithm for a tracking problem
in the lattice. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 841–848. ACM, 2005.

[JW99] Thomas Jansen and Ingo Wegener. On the analysis of evolutionary algorithms - A proof that crossover really can help. In
Proc. of European Symposium of Algorithms (ESA), volume 1643 of Lecture Notes in Computer Science, pages 184–193.
Springer, 1999.

[JW00] Thomas Jansen and Ingo Wegener. On the choice of the mutation probability for the (1+1) EA. In Proc. of Parallel Problem
Solving from Nature (PPSN), volume 1917 of Lecture Notes in Computer Science, pages 89–98. Springer, 2000.

[JW05] Thomas Jansen and Ingo Wegener. Real royal road functions–where crossover provably is essential. Discrete Applied
Mathematics, 149:111–125, 2005.

[JW06] Thomas Jansen and Ingo Wegener. On the analysis of a dynamic evolutionary algorithm. Journal of Discrete Algorithms,
4:181–199, 2006.

[KHE15] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E. Eiben. Parameter control in evolutionary algorithms: Trends and
challenges. IEEE Transactions on Evolutionary Computation, 19:167–187, 2015.

[KM12] Timo Kötzing and Hendrik Molter. ACO beats EA on a dynamic pseudo-boolean function. In Proc. of Parallel Problem
Solving from Nature (PPSN), volume 7491 of Lecture Notes in Computer Science, pages 113–122. Springer, 2012.

[LS11] Jörg Lässig and Dirk Sudholt. Adaptive population models for offspring populations and parallel evolutionary algorithms.
In Proc. of Foundations of Genetic Algorithms (FOGA), pages 181–192. ACM, 2011.

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algorithmica, 64:623–642, 2012.

[LW14] Andrei Lissovoi and Carsten Witt. MMAS vs. population-based EA on a family of dynamic fitness functions. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO), pages 1399–1406. ACM, 2014.

[LW15] Andrei Lissovoi and Carsten Witt. Runtime analysis of ant colony optimization on dynamic shortest path problems. Theo-
retical Computer Science, 561:73–85, 2015.

B. Doerr: Theory of Evolutionary Computation 103

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing. In Proc. of Parallel Problem Solving
from Nature (PPSN), pages 15–26. Elsevier, 1992.

[Neu04] Frank Neumann. Expected runtimes of evolutionary algorithms for the eulerian cycle problem. In Proc. of Congress on
Evolutionary Computation (CEC), pages 904–910. IEEE, 2004.

[NOW09] Frank Neumann, Pietro Simone Oliveto, and Carsten Witt. Theoretical analysis of fitness-proportional selection: land-
scapes and efficiency. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 835–842. ACM,
2009.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree
problem. Theoretical Computer Science, 378:32–40, 2007.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Optimization – Algorithms and Their Com-
putational Complexity. Springer, 2010.

[OHY09] Pietro Simone Oliveto, Jun He, and Xin Yao. Analysis of the (1+1)-EA for finding approximate solutions to vertex cover
problems. IEEE Transactions on Evolutionary Computation, 13:1006–1029, 2009.

[OW15] Pietro Simone Oliveto and Carsten Witt. Improved time complexity analysis of the simple genetic algorithm. Theoretical
Computer Science, 605:21–41, 2015.

[OZ15] Pietro Simone Oliveto and Christine Zarges. Analysis of diversity mechanisms for optimisation in dynamic environments
with low frequencies of change. Theoretical Computer Science, 561:37–56, 2015.

[Pos09] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In GECCO (Com-
panion), pages 2309–2314. ACM, 2009.

[Pos10] Petr Posı́k. Comparison of Cauchy EDA and BIPOP-CMA-ES algorithms on the BBOB noiseless testbed. In GECCO
(Companion), pages 1697–1702. ACM, 2010.

[PPHST15] Tiago Paixao, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenova. First steps towards a runtime comparison of
natural and artificial evolution. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 1455–
1462. ACM, 2015.

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Algorithms. Kovac, 1997.

B. Doerr: Theory of Evolutionary Computation 104

[SGS11] Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. High dimensions and heavy tails for natural evolution strate-
gies. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 845–852. ACM, 2011.

[SH87] Harold H. Szu and Ralph L. Hartley. Fast simulated annealing. Physics Letters A, 122:157–162, 1987.

[Sto06] Tobias Storch. How randomized search heuristics find maximum cliques in planar graphs. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO), pages 567–574. ACM, 2006.

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The analysis of evolutionary algorithms on sorting and shortest
paths problems. Journal of Mathematical Modelling and Algorithms, 3:349–366, 2004.

[Sud05] Dirk Sudholt. Crossover is provably essential for the Ising model on trees. In Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO). ACM, 2005.

[SW04] Tobias Storch and Ingo Wegener. Real royal road functions for constant population size. Theoretical Computer Science,
320:123–134, 2004.

[Wit05] Carsten Witt. Worst-case and average-case approximations by simple randomized search heuristics. In Proc. of Sympo-
sium on Theoretical Aspects of Computer Science (STACS), pages 44–56. Springer, 2005.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combinatorics,
Probability & Computing, 22:294–318, 2013.

[Wit14] Carsten Witt. Revised analysis of the (1+1) EA for the minimum spanning tree problem. In Proc. of Genetic and Evolution-
ary Computation Conference (GECCO), pages 509–516. ACM, 2014.

[YL97] Xin Yao and Yong Liu. Fast evolution strategies. In Evolutionary Programming, volume 1213 of Lecture Notes in Computer
Science, pages 151–162. Springer, 1997.

[YLL99] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE Trans. Evolutionary Computation,
3:82–102, 1999.

B. Doerr: Theory of Evolutionary Computation 105

	CEC17_tutorial_theory
	CEC17-Tutorial-References

