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Instructor: Benjamin Doerr
� Benjamin Doerr is a full professor at the French École Polytechnique. 

� He received his diploma (1998), PhD (2000) and habilitation (2005) in 
mathematics from the university of Kiel (Germany). His research area is 
the theory both of problem-specific algorithms and of randomized search 
heuristics like evolutionary algorithms. Major contributions to the latter 
include runtime analyses for evolutionary algorithms and ant colony 
optimizers, as well as the further development of the drift analysis 
method, in particular, multiplicative and adaptive drift. In the young area 
of black-box complexity, he proved several of the current best bounds. 

� Together with Frank Neumann and Ingo Wegener, Benjamin Doerr
founded the theory track at GECCO and served as its co-chair 2007-
2009 and 2014. He is a member of the editorial boards of several 
journals, among them Artificial Intelligence, Evolutionary Computation, 
Natural Computing, and Theoretical Computer Science. Together with 
Anne Auger, he edited the book Theory of Randomized Search 
Heuristics.
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This Tutorial: A Real Introduction to Theory
� GECCO, CEC, PPSN always had a good number of theory tutorials

� They did a great job in educating the theory community

� However, not much was offered for those attendees which

� have little experience with theory

� but want to understand what the theory people are doing (and why)

� This is the target audience of this tutorial. We try to answer those 
questions which come before the classic theory tutorials
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History/Evolution of This Tutorial:
� A difficult start: GECCO 2013 and GECCO 2015 did not accept a real 

beginner’s theory tutorial.

� Real beginners theory tutorials:
� PPSN 2014: Anne Auger and me gave the first real beginners theory 

tutorial, covering both discrete and continuous optimization
� GECCO 2016 & WCCI 2016: A real beginners tutorial on theory of 

evolutionary computation in discrete search spaces (by Carola Doerr
and me)

� PPSN 2016: stronger focus on adaptive parameter settings
� CEC 2017 & GECCO 2017: added “fast genetic algorithms”

� This tutorial:
� 20% overlap with PPSN 2014
� 60% overlap with GECCO/CEC 2016
� 85% overlap with PPSN 2016
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Questions Answered in This Tutorial 
� What is theory in evolutionary computation (EC)?

� Why do theory? How does it help us understanding EC?

� How do I read and interpret a theory result?

� What type of results can I expect from theory (and which not)?

� What are current “hot topics” in the theory of EC?
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Focus: EAs with Discrete Search Spaces
� We try to answer these questions independent of a particular subarea of 

theory

� However, to not overload you with definitions and notation, we focus on  
evolutionary algorithms on discrete search spaces

� Hence we intentionally omit examples from

� genetic programming, estimation of distribution algorithms, ant colony 
optimizers, swarm intelligence, …

� all subareas of continuous optimization

� As said, this is for teaching purposes only. There is strong theory 
research in all these areas. All answers this tutorial give are equally valid 
for these areas
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A Final Word Before We Start
� If I’m saying things you don’t understand or if you want to know more 

than what I had planned to discuss, don’t be shy to ask questions at any 
time!

� This is “your” tutorial and I want it to be as useful for you as possible

� This is still a young tutorial. To further improve it, your feedback (positive 
and negative) is greatly appreciated!

� Æ So talk to me after the tutorial, during the coffee breaks, social 
event, late-night beer drinking, … or send me an email
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Outline of the Tutorial
� Part I: What We Mean by Theory of EC

� Part II: A Guided Walk Through a Famous Theory Result

� an illustrative example to convey the main messages of this tutorial

� Part III: How Theory Has Contributed to a Better Understanding of EAs

� 3 examples showing how theory can have an impact

� Part IV: Current Hot Topics in the Theory of EAs

� in particular: dynamic/adaptive parameter choices

� Part V: Concluding Remarks

� Appendix: glossary, references
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Part I:

What We Mean by 
“Theory of EC”
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What Do We Mean With Theory?
� Definition (for this tutorial): 

By theory, we mean results proven with mathematical rigor

� Mathematical rigor:

� make precise the evolutionary algorithm (EA) you regard

� make precise the problem you try to solve with the EA

� make precise a statement on the performance of the EA solving this 
problem

� prove this statement

� Example:
Theorem: The (1+1) EA finds the optimum of the OneMax test function 
݂: ሼ0,1ሽ → Թ; ݔ ↦ ∑ ݔ

ୀଵ in an expected number of at most ݁݊	ln	ሺ݊ሻ
iterations. 
Proof: blah, blah, …
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Other Notions of Theory
� Theory: Mathematically proven results

� Experimentally guided theory: Set up an artificial experiment to 
experimentally analyze a particular question

� example: add a neutrality bit to two classic test functions, run a GA on 
these, and derive insight from the outcomes of the experiments

� Descriptive theory: Try to describe/measure/quantify observations

� example: some parts of landscape analysis

� “Theories”: Unproven claims that (mis-)guide our thinking

� example: building block hypothesis
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Other Notions of Theory
� Theory: Mathematically proven results

============<in this tutorial, we focus on the above>============
� Experimentally guided theory: Set up an artificial experiment to 

experimentally analyze a particular question

� example: add a neutrality bit to two classic test functions, run a GA on 
these, and derive insight from the outcomes of the experiments

� Descriptive theory: Try to describe/measure/quantify observations

� example: some parts of landscape analysis

� “Theories”: Unproven claims that (mis-)guide our thinking

� example: building block hypothesis
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Why Do Theory? Because of Results
� Absolute guarantee that the result is correct

� your can be sure

� reviewers can check truly the correctness of results

� readers can trust reviewers or, with moderate maths skills, check the 
correctness themselves

� Many results can only be obtained by theory; e.g., because you make a 
statement on a very large or even infinite set

� all bit-strings of length ݊, 

� all TSP instances on ݊ vertices, 

� all input sizes ݊ ∈ Գ,

� all possible algorithms for a problem
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Why Do Theory? Because of the Approach
� A proof (automatically) gives insight in

� how things work (Æ working principles of EC)

� why the result is as it is

� Self-correcting/self-guiding effect of proving: when proving a result, you 
are automatically pointed to the questions that need more thought

� Trigger for new ideas

� clarifying nature of mathematics

� playful nature of mathematicians
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The Price for All This
All this has a certain a price… 
Possible drawbacks of theory results include:

� Restricted scope: So far, mostly simple algorithms could be analyzed for 
simple optimization problems

� Less precise results: Constants are not tight, or not explicit as in 
“ܱ ݊ଶ ” = “less than ܿ݊ଶ for some unspecified constant ܿ”

� Less specific results: You get a weaker guarantee for all problem 
instances instead of a stronger one for the instances that show up in your 
real-world application

� Theory results can be very difficult to obtain: The proof might be short 
and easy to read, but finding it took long hours

� Usually, there is no generic way to the solution, but you need a  
completely new, clever idea
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Theory and Experiments: 
Complementary Results

17

EXPERIMENTS                 .
� only a finite number of instances 

of bounded size
Æ have to see how

representative this is
� only tells you numbers
� real-world instances

� everything you can implement
� exact numbers
� depends on implementation
� can be cheap (well, depends…)

THEORY                           .
� cover all problem instances of 

arbitrary sizes
Æ guarantee!

� proof tells you the reason
� only models for real-world 

instances (realistic?)

� limited scope, e.g., (1+1) EA
� limited precision, e.g., ܱ ݊ଶ
� implementation independent
� finding proofs can be difficult

Æ Ideal: Combine theory and experiments. Difficulty: Get good theory people
and good experimental people to talk to each other…
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Part II: 

A Guided Walk 
Through a Famous 

Theory Result
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Outline for This Part
� We use a simple but famous theory result 

� as an example for a non-trivial result

� to show how to read a theory result

� to explain the meaning of such a theoretical statement

� to discuss typical shortcomings of theory results
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A Famous Result
Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function

݂: 0,1  → Թ, ,ଵݔ … , ݔ ↦ݓݔ


ୀଵ
, ,ଵݓ … ݓ, ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.

Reference:
[DJW02]  S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) 
evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81, 
2002.

-- famous paper (500+ citations, maybe the most-cited pure EA theory paper)

-- famous problem (20+ papers working on exactly this problem, many very 
useful methods were developed in trying to solve this problem)
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Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function

݂: 0,1  → Թ, ,ଵݔ … , ݔ ↦ݓݔ


ୀଵ
, ,ଵݓ … ݓ, ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.

(1+1) evolutionary algorithm to maximize ࢌ: ,   → Թ:
1. choose ݔ ∈ 0,1  uniformly at random
2. while not terminate do
3.     generate ݕ from ݔ by flipping each bit independently

with probability 1/݊ (“standard-bit mutation”)
4.     if ݂ ݕ  ݂ ݔ then ݔ ≔ ݕ
5. output ݔ

Reading This Result

21

at most ݊ܥ ln ݊ for some 
unspecified constant ܥ

a hidden all-quantifier: we claim 
the result for all …,ଵݓ , ݓ ∈ Թ

performance measure: number of iterations or 
fitness evaluations, but not runtime in seconds

A mathematically 
proven result

should be made 
precise in the paper to 
avoid any ambiguity
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What is Cool About This Result?
� Gives a proven performance guarantee

� General: a statement for all linear functions in all dimensions ݊
� Non-trivial 

� Surprising 

� Provides insight in how EAs work 

Theorem: The (1+1) evolutionary algorithm finds the maximum of any 
linear function 

݂: 0,1  → Թ, ,ଵݔ … , ݔ ↦ݓݔ


ୀଵ
, ,ଵݓ … , ݓ ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.

22
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on the next slides
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True
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Non-Trivial: Hard to Prove & Hard to Explain 
Why it Should be True

� Hard to prove
� 7 pages complicated maths proof in [DJW02]
� we can do it in one page now, but only because we developed deep 

analysis techniques (artificial fitness functions, drift analysis)

� No “easy” explanation
� monotonicity is not enough: if the ݓ are all positive, then “flipping a 0 

to a 1 always increases the fitness” (monotonicity).
� easy explanation that is not true: monotonic functions are easy to 

optimize for an EA – disproved in [DJS+13]
� separability is not enough

� a linear function can be written as a sum of functions ݂ such that 
the ݂ depend on disjoint sets of bits

� not true that the optimization time of such a sum is not much more 
than the worst optimization time of the summands (because the 
independent ݂ are optimized in parallel) – disproved in [DSW13]
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Surprising: Same Runtime For Very 
Different Fitness Landscapes

� Example 1: OneMax, the function counting the number of 1s in a string, 
OM: 0,1  → Թ, ሺݔଵ, … , ሻݔ ↦ ∑ ݔ

ୀଵ
� unique global maximum at ሺ1, … , 1ሻ
� perfect fitness distance correlation: if a search point has higher 

fitness, then it is closer to the global optimum

� Example 2: BinaryValue (BinVal or BV for short), the function mapping a 
bit-string to the number it represents in binary
	BV: 0,1  → Թ, ሺݔଵ, … , ሻݔ ↦ ∑ 2ିݔ

ୀଵ
� unique global maximum at 1,… , 1
� Very low fitness-distance correlation. Example: 

� BV 10…0 ൌ 2ିଵ, distance to optimum is ݊ െ 1
� BV 01…1 ൌ 2ିଵ െ 1, distance to opt. is 1
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Insight in Working Principles
� Insight from the result:

� Even if there is a low fitness-distance correlation (as is the case for 
the BinVal function), EAs can be very efficient optimizers

� Insight from the proof:

� The Hamming distance ,ݔሺܪ ሻ∗ݔ of ݔ to the optimum ݔ∗ measures 
very well the quality of the search point ݔ:

� If the current search point of the (1+1) EA is ݔ, then the optimum is 
found within an expected number ܧሾ ௫ܶሿ of iterations that satisfies

݁݊ ln ,ݔሺܪ ሻ∗ݔ െ ܱ ݊  ܧ ௫ܶ  4݁݊ ln ܪ2݁ ,ݔ ∗ݔ 	

independent of ݂
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A Glimpse on a Modern Proof
� Theorem [DJW12]: For all problem sizes ݊ and all linear functions ݂: 0,1  → Թ

with ݂ ݔ ൌ ଵݔଵݓ  ⋯ ݔݓ the (1+1) EA finds the optimum of ݂ in an expected 
number of at most 4݁݊ lnሺ2݁݊ሻ iterations.

� 1st proof idea: Without loss, we can assume that ݓଵ  ଶݓ  ⋯  ݓ  0
� 2nd proof idea: Regard an artificial fitness measure!

� Define ሚ݂ ݔ ൌ ∑ 2 െ ିଵ
 ݔ	

ୀଵ “artificial weights from 1  ଵ
 to 2

� Key lemma: Consider the (1+1) EA optimizing the original ݂. Assume that 
some iteration starts with the search point ݔ and ends with the random 
search point ݔ′. Then

ܧ ሚ݂ሺݔ∗ሻ 	െ ሚ݂ ᇱݔ  1 െ 1
4݁݊

ሚ݂ ∗ݔ െ ሚ݂ ݔ

expected artificial fitness distance reduces by a factor of 1 െ ଵ
ସ

� 3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t. 
the artificial fitness into a runtime bound
� roughly: the expected runtime is at most the number of iterations needed to 

get the expected artificial fitness distance below one.

27
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Multiplicative Drift Theorem
� Theorem [DJW12]: Let ܺ, ଵܺ, ܺଶ, …	 be a sequence of random variables taking 

values in the set 0 ∪ 1,∞ . Let ߜ  0. Assume that for all ݐ ∈ Գ, we have
ܧ ܺ௧ାଵ  1 െ ߜ ܧ ܺ௧ .

Let ܶ ≔ min ݐ ∈ Գ	 ܺ௧ ൌ 0ሽ. Then 

ܧ ܶ  1  lnܺ
ߜ .

� On the previous slide, this theorem was used with 
� ߜ ൌ 1/4݁݊
� ܺ௧ ൌ ሚ݂ ∗ݔ െ ሚ݂ ሺ௧ሻݔ
� and the estimate ܺ  2݊.

� Bibliographical notes: Artificial fitness functions very similar to this ሚ݂ were 
already used in [DJW02] (conference version [DJW98]). Drift analysis 
(“translating progress into runtime”) was introduced to the field in [HY01] to give a 
simpler proof of the [DJW02] result. A different approach was given by [Jäg08]. 
The multiplicative drift theorem [DJW12] (conference version [DJW10]) proves 
the [DJW02] result in one page and is one of the most-used drift theorems today.

28
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What is Uncool About 
The Linear Functions Result?

� An unrealistically simple EA: the (1+1) EA

� Linear functions are artificial test function only

� Not a precise result, but only ܱሺ݊ log ݊ሻ in [DJW02] or a most likely
significantly too large constant in the [DJW12] result just shown 

ÆWe discuss these points on the following slides

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear 
function 

݂: 0,1  → Թ, ,ଵݔ … , ݔ ↦ݓݔ


ୀଵ
, ,ଵݓ … ݓ, ∈ Թ,

in an expected number of ܱሺ݊ log ݊ሻ iterations.
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Maybe Uncool: Only the Simple (1+1) EA
� This was, at that time (2002), the absolute maximum that was possible 

when asking for a proven result.

� Today, we know (a little bit) more. E.g., the (1+  EA optimizes any (ࣅ
linear function in time (= number of fitness evaluations)

ܱ ݊ log ݊  ݊ߣ .
This bound is sharp for BinVal, but not for OneMax, where the 
optimization time is 

ܱ ݊ log ݊  	݊ߣ ୪୭ ୪୭ ఒ୪୭ ఒ .

Æ Not all linear functions have the same optimization time! [DK15]

� We are optimistic that the theory community will make progress towards 
more complicated EAs
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Maybe Uncool: Only Linear Functions
� Again, this was the starting point. Today, we know how the (1+1) EA (and 

some other algorithms) compute
� Eulerian cycles [Neu04,DHN06,DKS07,DJ07]
� shortest paths [STW04,DHK07,BBD+09]
� minimum spanning trees [NW07,DJ10,Wit14]
� and many other “easy” optimization problems

� We also have some results on approximate solutions for NP-complete 
problems like partition [Wit05], vertex cover [FHH+09,OHY09], maximum 
cliques [Sto06]

� We are optimistic that we will enlarge the set of problems we understand. 
However, like in many fields, it is also clear that “theory will always be 
behind”; that is, it will take quite some time until theoretical analyses 
become available for typical algorithms used in practice and realistic real-
world problems

31



Benjamin Doerr: Theory of Evolutionary Computation

Maybe Uncool: , Large Constants
� Having only asymptotic results is a typical price for proven results (also in the 

classic algorithms field).

� There is the general experience that often a proven “ܱሺ݊ log ݊ሻ” in fact means 
“roughly ܿ݊ log ݊” for a small constant ܿ, which can, e.g., be obtained from 
experiments

� We know more now [Wit13]: The runtime of the (1+1) EA on any linear function is 
݁݊ ln ݊  ܱሺ݊ሻ, that is, at most ݁݊ ln ݊  ݊ܥ for some constant ܥ
� still an asymptotic result, but the asymptotics are only in a lower order term

� [Wit13] also has a non-asymptotic result, but it is hard to digest
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Summary “Guided Tour”
� We have seen one of the most influential theory results: The (1+1) EA 

optimizes any linear function in ܱሺ݊ log ݊ሻ iterations

� We have seen how to read and understand such a result

� We have seen why this result is important

� non-trivial and surprising

� gives insights in how EAs work

� spurred the development of many important tools (e.g., drift analysis)

� We have discussed strengths and limitations of theory results

33



Benjamin Doerr: Theory of Evolutionary Computation

Part III: 

How Theory Can 
Contribute to a 

Better Understanding 
of EAs
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Outline for This Part
3 ways how theory can help understanding and improving EAs

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and 
algorithms

3. Invent new representations, operators, and algorithms
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Contribution 1: Debunk Misconceptions
� When working with EA, it is easy to conjecture some general rule from 

observations, but (without theory) it is hard to distinguish between “we 
often observe” and “it is true that”

� Reason: it is often hard to falsify a conjecture experimentally

� the conjecture might be true “often enough” or for the problems we 
just have in mind, but not in general

� Danger: misconceptions prevail in the EA community and mislead the 
future development of the field

� 2 (light) examples on the following slides
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Misconception: Functions Without Local 
Optima are Easy to Optimize

� A function ݂: 0,1  → Թ	has no local optima if each non-optimal search 
point has a neighbor with better fitness

� if ݂(ݔ) is not maximal, then by flipping a single bit of ݔ you can get a 
better solution

� Misconception: Such functions are easy to optimize…

� because already a simple hill-climber flipping single bits (randomized 
local search) does the job

� Truth: There are functions ݂: 0,1  → Թ without local optima where all 
reasonable EAs with high probability need time exponential in ݊ to find 
even a reasonably good solution [HGD94,Rud97,DJW98]

� reason: yes, it is easy to find a better neighbor if you’re not optimal 
yet, but you may need to do this an exponential number of times 
because all improving paths to the optimum are that long
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Misconception: Monotonic Functions are 
Easy to Optimize for EAs

� A function ݂: 0,1  → Թ	is monotonically strictly increasing if the fitness 
increases whenever you flip a 0-bit to 1

� special case of “no local optima” where each neighbor with more ones 
is better

� Misconception: Such functions are easy to optimize for standard EAs…

� because already a simple hill-climber flipping single bits (randomized 
local search) does the job in time ܱሺ݊ log ݊ሻ

� [DJS+13]: There is a monotonically strictly increasing function such that 
with high probability the (1+1) EA with mutation probability 16/݊ needs 
exponential time to find the optimum

� very different from linear functions with positive weights: ܱ ݊ log ݊ time
38
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Summary Misconceptions
� Intuitive reasoning or experimental observations can lead to wrong beliefs.

� It is hard to falsify them experimentally, because

� counter-examples may be rare (so random search does not find them)

� counter-examples may have an unexpected structure

� There is nothing wrong with keeping these beliefs as “rules of thumb”, but 
it is important to distinguish between what is a rule of thumb and what is a 
proven fact

� Theory is the right tool for this!
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Contribution 2: Help Designing EAs
� When designing an EA, you have to decide between a huge number of 

design choices: the basic algorithm, the operators and representations, 
and the parameter settings.

� Theory can help you with deep and reliable analyses of scenarios similar 
to yours

� The question “what is a similar scenario” remains, but you have the 
same difficulty when looking for advice from experimental research

� 2 examples:

� fitness-proportionate selection

� edge-based representations for optimization problems in graphs
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Designing EAs: 
Fitness-Proportionate Selection

� Fitness-proportionate selection has been criticized (e.g., because it is not 
invariant under re-scaling the fitness), but it is still used a lot.

� Theorem [OW15]: If you use

� the Simple GA as proposed by Goldberg [Gol89] (fitness-proportionate 
selection, comma selection) 

� to optimize the OneMax test function ݂: 0,1  → Թ; ݔ ↦ ଵݔ  ⋯ ݔ
� with a population size ݊.ଶସଽଽ or less

then with high probability the GA in a polynomial number of iterations 
does not create any individual that is 1% better than a random individual

� Interpretation: Most likely, fitness-proportionate selection and comma 
selection together make sense only in rare circumstances

� more difficulties with fitness-proportionate selection: [HJKN08, NOW09]
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Designing EAs: Representations
� Several theoretical works on shortest path problems [STW04, DHK07, 

BBD+09], all use a vertex-based representation: 

� each vertex points to its predecessor in the path

� mutation: rewire a random vertex to a random neighbor

� [DJ10]: How about an edge-based representation?

� individuals are set of edges (forming reasonable paths)

� mutation: add a random edge (and delete the one made obsolete)

� Result: All previous algorithms become faster by a factor of ൎ  మ

|ா|

� [JOZ13]: edge-based representation also preferable for vertex cover

� Interpretation: While there is no guarantee for success, it may be useful 
to think of an edge-based representation for graph-algorithmic problems

42
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Contribution 3: Invent New Operators
and Algorithms

� Theory can also, both via the deep understanding gained from proofs 
and by “theory-driven curiosity” invent new operators and algorithms. 

� Example 1: What is the right way to do mutation?

� A thorough analysis how EAs optimize jump functions suggests that 
we should use  mutation operators such that the Hamming distance 
between parent and offspring follows a heavy-tailed distribution (and 
not a binomial one)
Æ best-paper nominee in the GECCO’17 Genetic Algorithms track 
[DLMN17]

� Example 2: The ሺ1  ,ߣ ߣ ሻ GA

� Invent an algorithm that truly profits also from inferior search points
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Example 1: Invent A New Mutation Operator
� Short storyline: The recommendation to flip bits independently with 

probability 1 ݊⁄ might be overfitted to ONEMAX or other unimodal 
functions

� Longer storyline of this (longer) part:

� 4 young researchers ask themselves what is the right mutation rate to 
optimize jump functions (which are not unimodal)

� surprise: for jump size ݉, the right mutation rate is ݉ ݊⁄ and this 
speeds-up things by a factor of ݉ ݁⁄ 

� but: missing this optimal mutation rate by a factor of ሺ1 േ ሻߝ increases 
the runtime again by a factor of at least ଵ	݁

ఌమ ହ⁄

� reason: With standard-bit mutation, the Hamming distance 
between parent and offspring is strongly concentrated

� solution: design a mutation operator where this Hamming distance 
follows a power-law (not strongly concentrated)
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General Belief on Mutation
� Disclaimer: In this part, we only deal with bit-string representations, that 

is, the search space is 0,1  for some ݊.

� General belief: A good way of doing mutation is standard-bit mutation, 
that is, flipping each bit independently with some probability  (“mut. rate”)

� global: from any parent you can generate any offspring (possibly with 
very small probability) Æ algorithms cannot get stuck forever in a local 
optimum (“convergence”)

� General recommendation: Use a small mutation rate like 1 ݊⁄
� nature-inspired (?)
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Informal Justifications for 
� If you want to flip a particular single bit, then

� a mutation rate of 1 ݊⁄ is the one that maximizes this probability

� reducing the rate by a factor of ܿ reduces this prob. by a factor of Θሺܿሻ
� increasing the rate by a factor of ܿ reduces this prob. by a factor of ݁ିሺሻ

� Mutation is destructive: If your current search point ݔ has a Hamming 
distance ܪ ,ݔ ∗ݔ of at most ݊ 2⁄ from the optimum ݔ∗, then the offspring ݕ
has (in expectation) a larger Hamming distance and this increase is 
proportional to :

� ܧ ܪ ,ݕ ∗ݔ ൌ ܪ ,ݔ ∗ݔ  ሺ݊ െ ܪ2 ,ݔ ∗ݔ ሻ
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Proven Results Supporting a Mut. Rate
� Optimal mutation rates for (1+1) EA:

�
ଵାሺଵሻ

 for OneMax [Müh92; Bäc93]

�
ൎଵ.ହଽାሺଵሻ

 for LeadingOnes [BDN10]

�
ଵାሺଵሻ

 for all linear functions [Wit13]

� monotonic functions [Jan07; DJSWZ13]: 

�  ൌ 
 , 0 ൏ ܿ ൏ 1, gives a Θሺ݊ log ݊ሻ runtime on all monotonic functions 

with unique optimum, 

�  ൌ ଵ
 gives ܱሺ݊ଵ.ହሻ, 

�   ଵ
 gives an exponential runtime on some monotonic functions.

� When ߣ  ln݊, then the optimal mutation rate for the (1+λ) EA optimizing 
OneMax is ଵାሺଵሻ [GW15].
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Results With a Different Message
� For the (1+1) EA optimizing the Needle function, 

� a mut. rate of 1/݊ gives a runtime of 1 െ 1 ݁⁄ ିଵ	2 ൎ 1.582 ⋅ 2

� a mut. rate of 1 2⁄ gives a runtime of 2 [GKS99]

� For the (1+1) EA optimizing the Trap function, 

� a mut. rate of 1/݊ gives a runtime of Θሺ݊ሻ
� a mut. rate of 1 2⁄ gives a runtime of 2 [DJW02]

� There is a function ݂: 0,1  → Թ such that the runtime of the (1+1) EA is

� super-polynomial for  ൌ  ୪୭ 
 and  ൌ ߱ ୪୭ 



� polynomial for  ൌ  ୪୭ 
 , ܿ any positive constant [JW00]
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What do These Theory Results Really Say?
� When a guru tells you that some  is the truly best mutation rate, then he lies.

� the example function of Jansen&Wegener is highly artificial Æ it is unlikely that 
it tell us something about the real world, but it was very good to show that the 
“general truths” that were around that time are not that true.

� If a function is sufficiently unsuitable for evolutionary algorithms, then you obtain a 
better performance from random search (=EA with mut. rate 1 2⁄ )

� Needle: no information gain until the optimum is found

� Trap: highly deceptive (higher fitness does not indicate a way towards the 
optimum)

� What remains is a set of rigorous runtime analyses that prove that a mutation rate 
close to 1 ݊⁄ is optimal for certain fitness functions.

Overall, theory rather supports the general recommendation to use 
standard-bit mutation with mutation rate around  ⁄

49



Benjamin Doerr: Theory of Evolutionary Computation

Really?
� Can we really say that 1 ݊⁄ is good (at least “usually”)?

� More provocative: Can we really say that standard-bit mutation the right 
way of doing mutation?

� What made us skeptical is that all results supporting standard-bit 
mutation with rate 1 ݊⁄ regard easy unimodal optimization problems 
(where flipping single bits is a very good way of making progress)

� OneMax, LeadingOnes, linear functions, monotonic functions

� Plan for the next few slides:

� regard ܯܷܬ ܲ, functions (not unimodal)

� observe something very different

� design a new mutation operator

� show that it is pretty good for many problems
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Main Object of This Study: Jump Functions
Jump functions [DJW02]:

� ܯܷܬ ܲ,: fitness of an ݊-bit string ݔ is the number ݔ ଵ of ones, except if
ݔ ଵ ∈ ݊ െ ݉  1,… , ݊ െ 1 , then the fitness is the number of zeroes. 

� Observations: 

� All ݔ with ݔ ଵ ൌ ݊ െ݉ form an easy to reach local optimum.

� From there, only flipping (the right) ݉ bits gives an improvement.

� The unique global optimum is ݔ∗ ൌ ሺ1…1ሻ.
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Runtime Analysis
� Theorem: Let ܶ ݉, ݊ denote the expected optimization time of the (1+1) 

EA optimizing ܯܷܬ ܲ, with mutation rate   1 2⁄ . For 2  ݉  ݊ 2⁄ ,

ܶ ݉, ݊ ൌ Θ ି 1 െ  ି .

� Corollary (speed-up at least exponential in ݉): For any  ∈ ሾ2 ݊⁄ ,݉ ݊⁄ ሿ,
ܶ ݉, ݊  6݁ଶ	2ି	 ଵܶ ⁄ ݉, ݊ .

� Æ Clearly, here  ⁄ is not a very good mutation rate!

� Proof of theorem (not overly difficult):

� upper bound: classic fitness level method

� lower bound: argue that the runtime is essentially the time it takes to 
go from the local to the global optimum
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Optimal Mutation Rates

� Theorem: Let ܶ௧ ݉, ݊ ≔ inf ܶ ݉, ݊ 	 	 ∈ ሾ0, 1 2⁄ ሿ . 

� ܶ௧ ݉, ݊ ൌ Θ ܶ ⁄ ݉, ݊ .

� If   ሺ1  ሻሺ݉ߝ ݊⁄ ሻ or   1 െ ߝ ሺ݉ ݊⁄ ሻ, then 

ܶ ݉, ݊  1
6 	exp

ଶߝ	݉
5 	 ܶ௧ ݉, ݊ .

� In simple words: ݉ ݊⁄ is essentially the optimal mutation rate, but a small 
deviation from it increases the runtime massively. 

� Æ Dilemma: To find a good mutation rate, you have to know how many 
bits you need to flip /

� Reason for the dilemma: When flipping bits independently at random 
(standard-bit mutation), then the Hamming distance ܪሺݔ, ሻݕ of parent and 
offspring is strongly concentrated around the mean 

� Æ exponential tails of the binomial distribution

� Æ Maybe standard-bit mutation is not the right thing to do?
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Solution: Heavy-tailed Mutation
� Recap: What do we need?

� No strong concentration of ܪሺݔ, ሻݕ
� Larger numbers of bits flip with reasonable probability

� 1-bit flips occur with constant probability (otherwise the friends of 
OneMax boycott our solution)

� Solution: Heavy-tailed mutation (with parameter ߚ  1, say ߚ ൌ 1.5) 

� choose ߙ ∈ ሼ1, 2, … , ݊ 2⁄ ሽ randomly with Pr ߙ ∼ ఉିߙ [power-law distrib.]

� perform standard-bit mutation with mutation rate ߙ ݊⁄

� Some maths: The probability to flip ݇ bits is Θ ݇ିఉ

� Æ no exponential tails -

� Pr ܪ ,ݔ ݕ ൌ 1 ൌ Θሺ1ሻ, e.g., ൎ32% for ߚ ൌ 1.5 (ൎ37% for classic mut.)
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Heavy-tailed Mutation: Results
� Theorem: The (1+1) EA with heavy-tailed mutation (ߚ  1) has an 

expected optimization time on ܯܷܬ ܲ, of

ܱ ݉ఉି.ହ	 ܶ௧ ݉, ݊ .	

� This one algorithm for all  is only an ࡻሺିࢼ.ሻ factor slower than 
the EA using the (for this ) optimal mutation rate!

� Compared to the classic EA, this is a speed-up by a factor of ݉ሺሻ.

� Lower bound (not important, but beautiful (also the proof)): The loss of slightly more than 
Θሺ݉.ହሻ – by taking ߚ ൌ 1  ߝ – is unavoidable:

� For ݊ sufficiently large, any distribution ܦ on the mutation rates in ሾ0, 1 2⁄ ሿ has an 
݉ ∈ ሾ2. . ݊ 2⁄ ሿ such that ܶ ݉, ݊  ݉	 ܶ௧ሺ݉, ݊ሻ.

� But let’s go back to understanding what we can gain from the heavy-
tailed mutation operator…
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Experiments (m=8, n=20..150)

56

Runtime of the (1+1) EA on ଼ܲܯܷܬ , (average over 1000 runs). To allow this number of 
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Beyond Jump Functions
� The “only” reason for these speed-ups is that we increase the probability 

for a ݇-bit flip from roughly ଵ
⋅! to roughly ݇ିఉ. 

� Hence it is fair to suspect that similar advantages are also observed 
for other problems where multi-bit flips are useful.

� Example (maximum matching): Let ܩ be an undirected graph having ݊
edges. A matching is a set of non-intersecting edges. Let ܱܲܶ be the size 
of a maximum matching. Let ݉ ∈ Գ be constant and ߝ ൌ ଶ

ଶାଵ. 

� The classic (1+1) EA finds a matching of size ை்ଵାఌ in an expected 
number of at most ܶ,ఌ iterations, where ܶ,ఌ is some number in 
Θሺ݊ଶାଶሻ. [GW03]

� The (1+1) EA with heavy-tailed mutation does the same in expected 
time of at most 1   1 ߞ	݁	 ߚ 



݉ఉି.ହ		 ܶ,ఌ. 

57
Riemann zeta function:
ߞ ߚ ൏ 2.62 for ߚ  1.5



Benjamin Doerr: Theory of Evolutionary Computation

Performance in Classic Results
� Since the heavy-tailed mutation operator flips any constant number of 

bits with constant probability, many classic results for the standard (1+1) 
EA remain valid (apart from constant factor changes):

� ܱሺ݊ log ݊ሻ runtime on OneMax

� ܱሺ݊ଶሻ runtime on LeadingOnes

� ܱ ݉ଶ log ௫ݓ݊ runtime on MinimumSpanningTree [NW07]

� and many others…

� The largest expected runtime that can occur on an ݂: 0,1  → Թ is

� Θሺ݊ሻ for the classic (1+1) EA [DJW02 (Trap); Wit05 (minimum 
makespan scheduling)]

� ܱሺ݊ఉ	2ሻ for the heavy-tailed (1+1) EA
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Key Working Principle of HT-Mutation
� Reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

� Distribute this free probability mass in a power-law fashion on all other 
݇-bit flips 
Æ increases the prob. for a ݇-bit flip from roughly ଵ

⋅! to roughly ݇ିఉ
Æ reduces the waiting time for a ݇-bit flip from ݁ ⋅ ݇! to ݇ఉ

� This redistribution of probability mass is a good deal, because we 
usually spend much more time on finding a good multi-bit flip

� ܯܷܬ ܲ,: spend Θሺ݊ log ݊ሻ time on all 1-bit flips, but ݊
݉ time to find 

the one necessary ݉-bit flip

� These elementary observations are a good reason to believe that 
heavy-tailed mutation is advantageous for a wide range of multi-modal 
problems. 
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Side Remark: Heavy-tailed -Bit Flips
� We built on standard-bit mutation, but (of course) you can also build on 

݇-bit flips: Choose ݇ according to a power-law and flip ݇ bits.

� Caveat: Choose ݇ ∈ ሾ0. . ݊ሿ, not ߙ ∈ ሾ1. . ݊ 2⁄ ሿ to obtain globality

� Strange effect: The probability of obtaining the inverse search-point 
is overly high (Θሺ݊ିఉሻ) Æ polynomial runtime on Trap

� Implementation of ݇-bit flips for large ݇?
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“Fast”
� Heavy-tailed mutation has been experimented with in continuous 

optimization (with mixed results as far as I understand)

� simulated annealing [Szu, Hartley ‘87]

� evolutionary programming [Yao, Lui, Lin ‘99]

� evolution strategies [Yao, Lui ’97; Hansen, Gemperle, Auger, 
Koumoutsakos ’06; Schaul, Glasmachers, Schmidthuber ‘11]

� estimation of distribution algorithms [Posik ’09, ‘10]

� Algorithms using heavy-tailed mutation were called fast by their 
inventors, e.g., fast simulated annealing.

� Æ we propose to call our mutation fast mutation and the resulting 
EAs fast, e.g., 1  1 ఉܣܧܨ	
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Practical Experience
� Most interesting question: How does this work for real problems? 

� Markus Wagner (personal communication): very preliminary 
experiments for the travelling thief problem

� “surprisingly good results for a first non-optimized try”

� Mironovich, Budalov ’17: Solid experiments for a test case generation 
problem

� HT mutation significantly beats classic mutation-based approaches

� HT mutation slows down the best-so-far crossover-based approach
Æ crossover served already to generate far offspring?

� More experience needed: You can help us a lot by simply taking your 
favorite discrete problem and replacing classic mutation with the heavy-
tailed mutation operator!
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Summary Fast Mutation
� Doing standard-bit mutation with rate 1 ݊⁄ might be over-fitted to OneMax

and similar problems where one-bit flips make you happy.

� For multi-modal landscapes (where more-bit flips are necessary), higher 
mutation rates are better

� Æ get rid of the ൎ ݁݇! waiting time for a ݇-bit flip

� Our heavy-tailed mutation operator gives all ݇-bit flips a Θሺ݇ఉሻ waiting time

� ݉ሺሻ factor speed-up for ܯܷܬ ܲ,

� ݉ሺሻ factor improvement of the runtime guarantee for max. matching

� first promising experimental results

� Is our heavy-tailed mutation operator is natural ?
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Example 2: Invent New Algorithms (1/3)
� Theory can also, both via the deep understanding gained from proofs 

and by “theory-driven curiosity” invent new operators and algorithms. 
Here is one recent example: 

� Theory-driven curiosity: Explain the following dichotomy!

� the theoretically best possible black-box optimization algorithm ࣛ∗ for 
OneMax (and all isomorphic fitness landscapes) needs only 
ܱሺ݊ log ݊⁄ ሻ fitness evaluations

� all known (reasonable) EAs need at least ݊ ⋅ ln ݊ fitness evaluations

� One explanation (from looking at the proofs): ࣛ∗ profits from all search 
points it generates, whereas most EAs gain significantly only from search 
points as good or better than the previous-best

� Can we invent an EA that also gains from inferior search points?

� YES [DDE13,GP14,DD15a,DD15b,Doe16,BD17], see next slides
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New Algorithms (2/3)
� A simple idea to exploit inferior search points (in a (1+1) fashion):

1. create ߣ mutation offspring from the parent by flipping ߣ random bits

2. select the best mutation offspring (“mutation winner”)

3. create ߣ crossover offspring via a biased uniform crossover of 
mutation winner and parent, taking bits from mutation winner with 
probability 1 ⁄ߣ only

4. select the best crossover offspring (“crossover winner”)

5. elitist selection: crossover winner replaces parent if not worse

� Underlying idea: 

� If ߣ is larger than one, then the mutation offspring will often be much 
worse than the parent (large mutation rates are destructive)

� However, the best of the mutation offspring may have made some 
good progress (besides all destruction)

� Crossover with parent repairs the destruction, but keeps the progress
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New Algorithms (3/3)
� Performance of the new algorithm, called (1+(ߣ,ߣ)) GA:

� solves OneMax in time (=number of fitness evaluations) 
ܱ  ୪୭ 

ఒ  ݊ߣ , which is ܱሺ݊	 log ݊	ሻ for ߣ ൌ log ݊
� the parameter ߣ can be chosen dynamically imitating the 1/5th rule, 

this gives an ܱ(݊) runtime

� experiments: 

� these improvements are visible already for small values of ߣ and 
small problem sizes ݊

� [GP14]: good results for satisfiability problems 

� Interpretation: Theoretical considerations can suggest new algorithmic 
ideas. Of course, much experimental work and fine-tuning is necessary 
to see how such ideas work best for real-world problems.
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Summary Part 3
Theory has contributed to the understanding and use of EAs by

� debunking misbeliefs (drawing a clear line between rules of thumb and 
proven fact)

� e.g., “no local optima” does not mean “easy”

� giving hints how to choose parameters, representations, operators, and 
algorithms

� e.g., how useful is crossover when we hardly find an example where 
is provably improves things?

� inventing new representations, operators, and algorithms; this is fueled 
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”
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Part IV: 

Current Topics of 
Interest

in Theory of EC
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What We Currently Try to Understand
� Precise runtime guarantees
� Dynamic/adaptive parameter choices
� Population-based EAs
� Dynamic optimization, noisy environments
� Non-elitism
� Black-box complexity

� Examples for all will be given on the next slides.

� Parallel to these topics, we study also methodical questions 
(e.g., drift analysis), but these are beyond the scope of this tutorial
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Precise Runtime Guarantees
� Theory results can give advice on how to chose the parameters of an EA

� Example: the discussion on optimal mutation rates in part III

� The more precisely we know the runtime (e.g., upper and lower bounds 
for its expected value), the more precise recommendations we can give 
for the right parameter choice (e.g., ݉ ݊⁄ instead of Θሺ݉ ݊⁄ ሻ)
� in practice, constant factors matter -

� Challenge: For such precise runtime bounds often the existing 
mathematical tools are insufficient

� in particular, tools from classic algorithms theory are often not strong 
enough, because in that community (for several good reasons) there 
is no interest in bounds more precise than ܱሺ… ሻ.
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Dynamic Parameter Choices
� Instead of fixing a parameter (mutation rate, population size, …) once 

and forever (static parameter choice), it might be preferable to use 
parameter choices that change
� depending on time 
� depending on the current state of the population
� depending on the performance in the past

� Hope:
� different parameter settings may be optimal early and late in the 

optimization process
� with self-adjusting parameters, we do not need to know the optimal 

parameters beforehand, but the EA finds them itself

� Experimental work suggests that dynamic parameter choices often 
outperform static ones (for surveys see [EHM99,KHE15])
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Theory for Dynamic Parameter Choices: 
Deterministic Schedules

� Deterministic variation schedule for the mutation rate [JW00, JW06]: 

� Toggle through the mutation rates ଵ ,
ଶ
 ,

ସ
 , … , ൎ

ଵ
ଶ

� Result: There is a function where this dynamic EA takes time 
ܱሺ݊ଶ log ݊ሻ, but any static EA takes exponential time

� For most functions, the dynamic EA is slower by a factor of log ݊
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Theory for Dynamic Parameter Choices: 
Depending on the Fitness

� Fitness-dependent mutation rate [BDN10]: When optimizing the 
LeadingOnes test function ܱܮ: 0,1  → ሼ0,… , ݊ሽ with the (1+1) EA

� the fixed mutation rate  ൌ ଵ
 gives a runtime of ൎ 0.86	݊ଶ

� the fixed mutation rate  ൌ ଵ.ହଽ
 gives ൎ 0.77	݊ଶ (optimal fixed mut. rate)

� the mutation rate  ൌ 
ࢌ ࢞ ା, gives ൎ 0.68	݊ଶ (optimal dyn. mut. rate)

� Fitness-dependent offspring pop. size for the ሺ1  ,ߣ ߣ ሻ GA [DDE13]:

� if you choose ࣅ ൌ 
ሻ, then the optimization time on OneMax࢞ሺࢌି drops 

from roughly ݊ log ݊ to ܱ ݊

� Interpretation: Fitness-dependent parameters can pay off. It is hard to find 
the optimal dependence, but others give improvements as well (Æ proofs)
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Theory for Dynamic Parameter Choices:
Success-based Dynamics

� Success-based choice of island number: You can reduce of the parallel 
runtime (but not the total work) of an island model when choosing the 
number of islands dynamically [LS11]:
� double the number of islands after each iteration without fitness gain
� half the number of islands after each improving iteration

� A success-based choice (1/5-th rule) of ߣ in the (1+(ߣ,ߣ)) GA automatically 
finds the optimal mutation strength [DD15a]
� ߣ ≔ రܨ ߣ	 after each iteration without fitness gain, ܨ  1 a constant
� ߣ ߣ	≕ ⁄ܨ after each improving iteration
� Important that ܨ is not too large and that the fourth root is taken 

(Æ 1/5-th rule). The doubling scheme of [LS11] would not have worked

� Simple mechanisms to automatically find the current-best parameter 
setting (note: this is great even when the optimal parameter does not 
change over time)
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Example Run Self-Adjusting GA
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Summary Dynamic Parameter Choices
� State of the art: A growing number of results, some very promising

� personal opinion: this is the future of discrete EC, as it allows to 
integrate very powerful natural principles like adaption and learning
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Population-Based EAs
� Population-based: using a non-trivial ( 2) population of individuals

� In practice, non-trivial populations are often employed

� In theory,

� no convincing evidence (yet) that larger populations are generally 
beneficial (apart from making the algorithm easy to run on parallel 
machines)

� the typical result is “up to a population size of …, the total work is 
unchanged, for larger population sizes, you pay extra”

� some evidence (on the level of artificially designed examples) that 
populations help in dynamic or noisy settings

� not many methods to deal with the complicated population dynamics

� Big open problem: Give rigorous advice how to profitably use larger 
populations (apart allowing parallel implementations)

� and devise methods to analyze such algorithms
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Dynamic Optimization
� Dynamic optimization: Optimization under (mildly) changing problem data

� Question: How well do EAs find and track the moving optimum?

� First theory result [Dro02]: dynamic version of OneMax where the 
optimum changes (by one bit) roughly every ܭ iterations

� If ܭ ൌ ݊ log ݊⁄ or larger, then a polynomial number of iterations 
suffices to find or re-find the current optimum

� ܭ can be quite a bit smaller than the usual ݁݊ ln ݊ runtime!

� First indication that EAs do well in dynamic optimization

� More recent results: Many (artificial) examples showing that populations, 
diversity mechanisms, island models, or ant colonies help finding or 
tracking dynamically changing optima [JS05,KM12,OZ15,LW14,LW15,…]

� Two main open problems: (i) What are realistic dynamic problems?

� (ii) What is the best way to optimize these?
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Non-Elitism
� Most EAs analyzed in theory use truncation selection, which is an elitist

selection = you cannot lose the best-so-far individual

� Mostly negative results on non-elitism are known. For example, [OW15] 
proves that the Simple Genetic Algorithm using fitness-proportional 
selection is unable to optimize OneMax efficiently [see above]

� Strong Selection Weak Mutation (SSWM) algorithm [PPHST15], inspired 
by an inter-disciplinary project with populations-genetics: 
� worsening solutions are accepted with some positive probability
� for improving offspring, acceptance rate depends on the fitness gain
� Examples are given in [PPHST15] for which SSWM outperforms 

classic EAs

� Black-box complexity view: there are examples where any elitist 
algorithm is much worse than a non-elitist algorithm [DL15]

� State of the art: Not much real understanding apart from sporadic results. 
The fact that non-elitism is used a lot in EC practice asks for more work.
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Limits of EC: Black-Box Complexity
� EAs are black-box algorithms: they learn about the problem at hand only 

by evaluating possible solutions

� What is the price for such a problem-independent approach? 
ÆThis is the main question in black-box complexity.

� In short, the black-box complexity of a problem is the minimal number of 
function evaluations that are needed to solve it

� = performance of the best-possible black-box algorithm
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Black-Box Complexity Insights
� Unified lower bounds: The black-box complexity is a lower bound for the 

runtime of any black-box algorithm: all possible kinds of EAs, ACO, EDA, 
simulated annealing, …

� Specialized black-box models allow to analyze the impact of algorithmic 
choices such as type of variation in use, the population size, etc.

� Example result: [LW12] proves that every unary unbiased algorithm 
needs Ω ݊ log ݊ function evaluations to optimize OneMax
� unary: mutation only, no crossover
� unbiased: symmetry in

� bit-values 0 and 1
� bit positions 1,2,…,݊

Æ Result implies that algorithms using fair mutation as only variation 
cannot be significantly more efficient on OneMax than the (1+1) EA
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Black-Box Complexity vs. Games –
Where EA Theory Meets Classic CS

� Black-box algorithms are strongly related to Mastermind-like guessing 
games: 
� algorithm guesses a search point
� opponent reveals the fitness

� Such guessing games have a long history in
classic computer science due to applications
in security and privacy

� We have several (hidden) black-box complexity
publications in classic CS venues (including a
paper to appear in the Journal of the ACM)
� EC theory meets classic theory
� a chance to get the classic CS community interested in our field!
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Part V: 

Conclusion
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Summary
� Theoretical research gives deep insights in the working principles of EC, 

with results that are of a different nature than in experimental work

� “very true” (=proven), but often apply to idealized settings only

� for all instances and sizes, …, but sometimes less precise

� often only asymptotic results instead of absolute numbers

� proofs tell us why certain facts are true

� The different nature of theoretical and experimental results implies that 
a real understanding is best obtained from a combination of both

� Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms
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How to Use Theory in Your Work?
� Try to read theory papers, but don’t expect more than from other papers 

� Neither a theory nor an experimental paper can tell you the best 
algorithm for your particular problem, but both can suggest ideas

� Try “theory thinking”: take a simplified version of your problem and 
imagine what could work and why

� Don’t be shy to talk to the theory people!

� they will not have the ultimate solution and their mathematical 
education makes them very cautious presenting an ultimate solution

� but they might be able to prevent you from a wrong path or suggest 
alternatives to your current approach
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Recent Books (Written for Theory People, 
But Not Too Hard to Read)

� Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

� Jansen (2013). Analyzing Evolutionary Algorithms, Springer

� Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization, 
Springer
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Thanks for your attention!
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Appendix A

Glossary of Terms 
Used in This Tutorial
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Discrete and Pseudo-Boolean Optimization
In this tutorial we are mostly interested in the optimization of problems of the 
type ݂: 0,1  → Թ
� Problems ݂: ܵ → Թ with finite search space ܵ are called discrete 

optimization problems 
(in contrast to continuous problems ݂:Թ → Թ or, more generally 
݂: ܵ → Թ with continuous ܵ)

� When ܵ ൌ 0,1  and ݂: 0,1  → Թ, we call ݂ a pseudo-Boolean function

� Please note: don’t get fooled! Even if optimizing a function ݂: 0,1  → Թ
may look harmless, a HUGE range of problems (even NP-hard ones like 
Max-SAT and many others!) can be expressed this way

90



Benjamin Doerr: Theory of Evolutionary Computation

What we Mean by “Optimization”
� Recall: we assume that we aim at optimizing a function ݂: 0,1  → Թ
� For this tutorial “optimization” = maximization, 

that is, we aim at finding a bit string ݔ ൌ ,ଵݔ … , ݔ such that ݂ ݔ  ݂ ݕ
for all ݕ ∈ 0,1 

� Note in particular: we are not interested in this tutorial in identifying local 
optima, only the global best solution(s) are interesting for us
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Expected Runtimes – Introduction 
� All EAs are randomized algorithms, i.e., they use random decisions 

during the optimization process (for example, the variation step, i.e., the 
step in which new search points are generated, is often based on random 
decisions---we will discuss this in more detail below)

� Our object of interest, the runtime of EAs, is the number of function 
evaluations that an EA needs until it queries for the first time an optimal 
solution. Since EAs are randomized algorithms, their runtime is a random 
variable
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Expected Runtimes – Definition 
� Formally, let ܣ be an EA, let ݂ be a function to be optimized and let 

,ଵݔ ,ଶݔ … be the series of search points queried by ܣ in one run of 
optimizing ݂. The search points ݔ are random and so is the series of 
fitness values ݂ ଵݔ , ݂ ଶݔ , …. The runtime ܶ is defined by

ܶ ≔ min ݅ ∈ Գ ݂ ݔ ൌ max
௬∈ ,ଵ 	݂ ݕ

� Several features of this random variable are interesting. We mostly care 
about the expected runtime of an EA. This number is the average 
number of function evaluations that are needed until an optimal solution 
is evaluated for the first time.

� Caution (1/2): sometimes runtime is measured in terms of generations, 
not function evaluations

� Caution (2/2): Regarding expectation only can be misleading (see next 
slide for an example), this is why we typically study also other features of 
the runtime, such as its concentration
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Expected Runtimes – Caution!
� The expected runtime does not always tell you the full truth:

There are functions for which the expected runtime is very large but 
which can be optimized in a small number of steps with a fair probability. 
Example: The DISTANCE function regarded in [DJW02], see next slide
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Expected Runtimes – Caution! 

95

Formally, 

Distance ݔ ≔  ݔ
ୀଵ,…,

െ ݊
2 െ

1
3

ଶ

We regard a simple hill climber 
(Randomized Local Search, RLS) 
which is 

� initialized uniformly at random, 

� flips one bit at a time,

� always accepts search points of 
best-so-far fitness

With probability (almost) 1/2, the 
algorithm has optimized DISTANCE 

after ܱ ݊ log ݊ steps

With probability ~1/2 it does not find 
the optimum at all, thus having an 
infinite expected optimization time
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Big-O Notation, aka Landau Notation (1/2)
� The “big-O” notation is used in algorithms theory to classify the order at 

which the running time of an algorithm grows with the size of the input 
problems

� In our example, it says that “The expected runtime of the (1+1) EA on 
any linear function with weights ് 0 is Θሺ݊	log	݊ሻ.”

� Θ ݊	log	݊ means that the expected runtime of the (1+1) EA on ݂ is

� ܱ ݊ log ݊ , that is, there exists a constant ܥ  0 such that for all ݊ the 
expected runtime is at most ݊ܥ log ݊

� Ω ݊ log ݊ , that is, there exists a constant ܿ  0 such that for all ݊ the 
expected runtime is at least ܿ݊ log ݊

� That is, there exist constants 0 ൏ ܿ ൏ ܥ such that
ܿ݊ log ݊  ሺܶܧ ଵାଵ ா,ሻ  ݊ܥ log ݊
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Big-O Notation, aka Landau Notation (2/2)
Further frequently used notation

� ݂ ∈ ሺ݊ሻ if ݂ grows slower than linear. Formally:
for all constants 0 ൏ ܿ there exists a ݊ such that for all ݊  ݊: ݂ ݊  ܿ݊

� ݂ ∈ ߱ሺ݊ሻ if ݂ grows faster than linear. Formally: 
for all constants 0 ൏ ܿ there exists a ݊ such that for all ݊  ݊: ݂ ݊  ܿ݊
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Appendix B

List of References
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