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Optimization?

Curiosity's view of "Mount
Sharp" (September 9,
2015)

Mount Sharp rises from the
middle of Gale Crater; the green
dot marks Curiosity's landing site
(north is down).

Source: https://en.wikipedia.org/wiki/Curiosity_(rover)
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General Notes

More questions than answers in Multi-Modal
Optimization (MMO)

Limited theoretical advances/strict formulations
Huge amount of literature (from the 80s onwards)

Tutorial: a “short” presentation on advances in the
field.

Stay connected... More to come in the near future...

Please interrupt for questions/comments
Suggestions for future work are more than welcome
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What is multi-modal optimization?

* Multi-modal Optimization (MMO): to locate multiple optimal (or close
to optimal) solutions in the search space

— This is different from a conventional optimization method which has a common
goal of seeking to locate a single global optimum

* A rough definition:

In a multimodal optimization task, the main purpose is to find multiple
optimal solutions (global and local), so that the user can have a better
knowledge about different optimal solutions in the search space and as
and when needed, the current solution may be switched to another
suitable optimum solution

Deb, Saha: Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm, ECJ, 2012




What is multi-modal optimization? (ll)

MMO problems represent an important class of optimization
problems

Many real-world optimization problems:

— multimodal by nature

— multiple satisfactory solutions exist (several real-world examples of MMO
problems are provided in subsequent slides)

From a decision maker’s point of view:

— it might be desirable to locate all global optima and/or some local optima
that are also considered as being satisfactory

— Better knowledge of alternative solutions



Methods for MMO

* Optimization methods specifically designed for solving MMO
problems:
— often called multimodal optimization or niching methods
— predominately developed from the field of meta-heuristic algorithms
— Covers the family of population-based stochastic optimization algorithms,
including evolutionary algorithms, evolutionary strategies, particle swarm
optimization, differential evolution, and so on
* These meta-heuristic algorithms are shown particularly effective
in solving multimodal optimization problems, if equipped with
specifically designed diversity preserving mechanisms, commonly
referred to as niching methods

 Two-fold aim: accurately locate and robustly maintain multiple
optima



What are the benefits?

A decision maker may be interested to know whether there exist
multiple equally good solutions before making a final decision

Important for a sensitivity study of a problem, and helps develop
more robust solutions to the problem

Plays an important role in keeping a diverse population of
candidate solutions, hence helps prevent the population from
converging prematurely to a sub-optimum

May increase the probability of finding the global optimum



Different scenarios

* One-global optimum:
— Looking for the global optimum solution only (not MMO)

All-global optima:

— Find all the global optimum solutions

— Benchmark problems of the CEC 2013/2015/2016 niching
competition series belong here

All-known optima:
— Find all local and/or global optimal solutions

* Approximate set of solutions:

— Locate as many as possible (subset) optimal solutions
(global/local) that are well distributed over the search space

Mike Preuss. 2015. Multimodal Optimization. GECCO Companion 15, http://dx.doi.org/10.1145/2739482.2756572
2/6/17
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Ecological inspiration

* |n natural ecosystems, individual species must compete to survive by
taking on different roles. Different species evolve to fill different niches (or
subspaces) in the environment that can support different types of life

2/6/17 11



What are niching methods?

* According to the Oxford Dictionary, a niche refers to “a role taken by
a type of organism within its community”; and a species refers to “a
group of living organisms consisting of similar individuals capable of
exchanging genes or interbreeding”

 These concepts of niches, species and speciation can be adopted in
an EA to encourage an EA population to evolve different species
targeting different optimal solutions in the search space
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MMO Publication trends

e Despite niching methods first appeared more than 30
years ago, currently niching techniques are experiencing a
revival, attracting researchers from across a wide range of
research fields

Query: —"multimodal optimization" OR niching - niching . ]
Real-world Applications trend
Source: = IEEE ~ Scopus
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MMO Application areas

Subject
" Agricultural and Biological Sciences

| Arts and Humanities

' |Biochemistry, Genetics and Molecular Biology
. |Business, Management and Accounting

. Chemical Engineering

| Chemistry

" |Computer Science

I Decision Sciences

B Earth and Planetary Sciences

I Economics, Econometrics and Finance

" Energy

" Engineering

I Environmental Science

| Immunology and Microbiology

" Materials Science

I Mathematics

" Medicine

 |Multidisciplinary

" Neuroscience

" |Nursing

. Pharmacology, Toxicology and Pharmaceutics
. |Physics and Astronomy

" Psychology

| Social Sciences

2/6/17



REAL-WORLD APPLICATIONS



Engineering example: truss topology design

* In topology optimization, the connectivity of members in a truss is to
be determined. There exist multiple different topologies with almost
equal overall weight in truss-structure design problems as the
members in the ground structure increase

* The resulting solution of truss-structure optimization design problems
becomes “multi-modal”’ with large number of truss members

e 120 —+— 120 ]« 120 —]«— 120 —|
Some nodes in the ground ! 110
structure may or may not be

removed. The optimal structure is k3
found as a subset of the ground | 120
structure l
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Deb K, Gulati S. “Design of truss-structures for minimum weight using genetic algorithms,” Finite Elements Anal Des 2001;
37: 447-65.

G.-C. Luh and C.-Y. Lin, “Optimal design of truss-structures using particle swarm optimization,” Computers and Structures,
vol. 89, no.23-24, pp. 2221 — 2232, Dec. 2011.



Truss topology design

e Sharing scheme is used to compute the similarity between
different topology design solutions

* The sharing fitness is a reduced one from the original fitness,
in order to discourage solutions in the vicinity
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Truss topology design
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Trust structure design using Bilevel and
niching aspects

 Formulate the truss problem as Sroumd strechure
a bilevel optimization problem

* A new bilevel PSO niching
method locates multiple
optimal solutions

» Stable topologies can be found
in the upper level

* The optimized sizes of the
members of these topologies
can be found in the lower level

* Niching at the upper level

» Standard optimizer is used at N . _—
the lower level to optimize a |

bilevel truss problem Optimized designs

Md. Jakirul Islam, Xiaodong Li, and Kalyanmoy Deb. 2017. Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary Algorithms. In
Proceedings of GECCO ’17, Berlin, Germany, July 15-19, 2017, DOI: h p://dx.doi.org/10.1145/3071178.3071251
2/6/17 19



Trust structure design examples
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Md. Jakirul Islam, Xiaodong Li, and Kalyanmoy Deb. 2017. Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary
2/6/17  Algorithms. In Proceedings of GECCO ’17, Berlin, Germany, July 15-19, 2017, DOI: h p://dx.doi.org/10.1145/3071178.3071251 20



Continuum structural topology optimization

Area=361 Area=361 Area=364 Area=368 Area=368 Area=369
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G.-C. Luh, C.-Y. Lin, Y.-S. Lin, “A binary particle swarm optimization for continuum structural topology optimization”,
Applied Soft Computing, Volume 11, Issue 2, March 2011, Pages 2833-2844, ISSN 1568-4946,



Drug Molecule Design (1)

e Search for molecular structures with specific
pharmacological or biological activity that influence
the behavior of certain targeted cells

* Objectives: Maximization of potency of drug &
Minimization of side-effects

 Aim: provide the medicinal chemist a set of diverse
molecular structures that can be promising candidates
for further research

— Fit solutions may result in finding structures that fail in
practice

— The chemist desires a set of promising structures rather
than only one single solution

J. W. Kruisselbrink, A. Aleman, M. T. M. Emmerich, A. P. ljzzerman, A. Bender, T. Baeck, and E. van der Horst, “Enhancing search space
diversity in multi-objective evolutionary drug molecule design using niching,” GECCQO’09, 2009, pp. 217-224.



Drug Molecule Design (Il)

Dynamic Niche Sharing technique incorporated to MOEA
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constraint score: 1

I
i
A
C

N NH,

ope

objective score: 0.5754
constraint score: 0

= S

‘ N=C=
o[
o
“ONH —a
J
(‘4
oYy
-

objective score: 0.5027
constraint score: 0.0002

&“m 1;>

objective score: 0.4795
constraint score: 0.0088

=
>4r\40

/OA‘Y j\/ M~
e

objective score: 0.4771
constraint score: 0.8965

Py

—d

z

objective score: 0.4778

constraint score: 0.1127

4>:m

z=n

SeueN

< o/

objective score: 0.4429
constraint score: 0. 5170

J”I

z

0

//4
—(
R

o=

H
objective score: 0.4614
constraint score: 0.2226

Without (left) and with (right) niching

objective score: 0.5348
constraint score: 0
/—\

0/

W
/\‘ 2
NS NS

N

objective score: 0.2684

constraint score: 1

LA
NHz I /5

Hg,r
/

objective score: 0.4755
constraint score: 0.0615

<O [N
AN
LY
NHw///\J/
\
= ‘/N\NH

g

~

objective score: 0.3617
constraint score: 0.0225

1/2

\\/>

[C
%

objective score: 0.3034
constraint score: 1

v K Ik )7/

,:\
\/NH

objective score: 0.2012
constraint score: 1

NHZ\KN\ O\
S N\V‘/ N~
o>

objective score: 0.2026
constraint score: 0.9594
SZEse

|

N _N
A - —
-0

/»VNH

objective score: 0.1750
constraint score: 1

NH

L

A s

LNH
e ®

o

\

objective score: 0.1580
constraint score: 1

§ \ /‘
ee:

objective score: 0.1704
constraint score: 1

N e

P

-

-
o=

Hz

J. W. Kruisselbrink, A. Aleman, M. T. M. Emmerich, A. P. ljzzerman, A. Bender, T. Baeck, and E. van der Horst, “Enhancing search space
diversity in multi-objective evolutionary drug molecule design using niching,” GECCQO’09, 2009, pp. 217-224.



Electromagnetics Optimization

Outer shield
M= 1000

Vit to e g Many niching techniques have been used to
address real-world problems in

Electromagnetics:

» Restricted Tournament Selection

* Deterministic Crowding

« Sharing
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Fig. 3. Examples of uniform induction levels detected by a run of Restricted 8 4 2 0
Tournament Selection (RTS). Optimal solutions are compared with that . n . o o
obtained with a simple GA and a non-optimized configuration Fig. 1. Electrode template Fig. 3. Examples of profiles with the corresponding electric field

B. Sareni, L. Krahenbuhl, and A. Nicolas, “Niching genetic algorithms for optimization in electromagnetics. i. fundamentals,” IEEE Transactions on
Magnetics, vol. 34, no. 5, pp. 2984-2987, 1998.
B. Sareni, L. Krahenbuhl and D. Muller, "Niching genetic algorithms for optimization in electromagnetics. Il. Shape optimization of electrodes using the
CSM," in IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 2988-2991, 1998.

2/6/17 24



Camera Positioning in “Virtual” Worlds

Preuss, Burelli, Yannakakis. Diversified Virtual Camera Composition. In EvoApplications
2012, pp. 265-274. Springer, 2012

2/6/17 25



Medical Informatics

Automatic determination of point
correspondence between images

Niching techniques (RTS) successfully discovered
optimal solutions that are measured by the

similarity between patches of the two images
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K. Delibasis, P. A. Asvestas, and G. K. Matsopoulos, “Multimodal genetic algorithms-based algorithm for automatic point correspondence,”
Pattern Recognition, vol. 43, no. 12, pp. 4011-4027, 2010
2/6/17
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Scheduling Problems

* Project Management
— Optimize productivity
* Makespan, Due dates
— Maximize revenue
— Minimize delays
* Job shop Scheduling

Pérez, E., Posada, M. & Lorenzana, A. Taking advantage of solving the resource
constrained multi-project scheduling problems using multi-modal genetic algorithms, Soft
Comput (2016) 20: 1879. doi:10.1007/s00500-015-1610-z

E. Prez, F. Herrera, and C. Hernndez, “Finding multiple solutions in job shop scheduling
by niching genetic algorithms,” Journal of Intelligent Manufacturing, vol. 14, no. 3-4, pp.
323-339, 2003.

E. Prez, M. Posada, and F. Herrera, “Analysis of new niching genetic algorithms for
finding multiple solutions in the job shop scheduling,” Journal of Intelligent Manufacturing,

vol. 23, no. 3, pp. 341-356, 2012. Pictures from: http://www.ymc.ch/en/lego-resource-scheduling-wall
2/6/17 27



Artificial examples

200

100

-100

-200

300 o)
10

X. Li, A. Engelbrecht, and M. Epitropakis, “Benchmark functions for cec’2013 special session and competition on niching
methods for multimodal function optimization,” Technical Report, Evolutionary Computation and Machine Learning Group, RMIT

University, 2013.
2/6/17 28



RESEARCH QUESTIONS



Main Research Questions

In which situations are MMO methods actually
better than “usual” EC optimization algorithms?

— Problems (problem classes)

— Performance measures

— Properties, e.g. time/space complexity

What are the advantages/characteristics of

different MMO methods, which one shall we
choose?

What are the limits for further improvement?

How can we rigorously define the field
(Theoretical justifications/analyses)?



CLASSIC NICHING METHODS



Fitness sharing

* A sharing function can
be used to degrade an
individual’s fitness based "™
on the presence of other
neighbouring individuals

* During selection, many
individuals in the same
neighbourhood would
degrade each other’s
fitness

— Limiting the number of
individuals occupying

the same niche An example to illustrate fitness sharing.

D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal function optimization,” in Proc. of the Second International
Conference on Genetic Algorithms, J. Grefenstette, Ed., 1987, pp. 41-49.
2/6/17 32



Crowding methods

Originally by De Jong (1975), and later modified by
Mahfoud (1995)

Crowding usually consists of two phases:

— Pairing phase: pairing each offspring with a similar individual
in the current population

— Replacement phase: which of the two will remain in the
population?

Deterministic Crowding selects the fittest individual in

each pair in the replacement phase

Probabilistic Crowding selects the surviving individual
for each pair based on a probabilistic formula that takes
fitness into account

S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, Department of General Engineering,
University of lllinois at Urbana-Champaign, Urbana, IL, 1995.

K. A. de Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Department of
Computer and Communication Sciences, University of Michigan, Ann Arbor, MI, 1975.



Deterministic crowding

Algorithm 1: The pseudocode of deterministic crowding.

l:

kW

X’ e

Select two parents, p; and ps randomly, without
replacement
Generate two offspring ¢ and c2
if d(p1,c1) +d(p2,c2) < d(p1,c2) + d(p2,c1) then
if f(c1) > f(p1) then replace p; with ¢;
if f(c2) > f(p2) then replace ps with c3
else
if f(c2) > f(p1) then replace p; with c3
if f(c1) > f(p2) then replace ps with ¢
end if

2/6/17

Each offspring tends to
compete for survival with
its most similar parent.

34



Clearing

* Proposed by Petrowski (1996); inspired by the principle of sharing
of limited resources within each subpopulation (or species).

* The clearing procedure only supplies the resources to the best
individuals in each subpopulation

* All individuals fall within r distance from the best k individuals
(below shows k = 2) from the population are cleared. This process
is repeated until the whole population is considered.
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A. Petrowski. A clearing procedure as a niching method for genetic algorithms. In Proceedings of Third IEEE International Conference on
Evolutionary Computation(ICEC’96), pages 798-803. Piscataway, NJ:IEEE Press, 1996.
2/6/17 35



Restricted Tournament Selection

Proposed by Harik (1997)

A modification of standard tournament selection,
based on local competition

Two individuals x and y are picked, and crossover and
mutation is performed in the standard way, creating
new individuals x” and y’

Then w (i.e., window size) individuals are randomly
chosen from the population, and among these the
closest one to x’, namely x”’, competes with x” for a spot
in the new population

G. Harick. Finding multi-modal solutions using restricted tournament selection. In Proceedings of the Sixth
International Conference on Genetic Algorithms(ICGA-95), pages 24-31, 1997.



Other methods

@ Best solution (O Cleared soln.

* Clustering based
methods (Yin and
Germay 1991)

* Species conserving GA
(SCGA) by Li et al. (2002)

* Modified clearing by
Singh and Deb (2006)

* Also sequential niching
methods, and so on

G. Singh and K. Deb, “Comparisons of multi-modal optimization algorithms based on evolutionary algorithms,” in Proc. of
the Genetic and Evolutionary Computation Conference 2006 (GECCQO’06), Washington, USA, 2006, pp. 1305 — 1312.



NICHING WITH PSO AND DE



PSO niching methods

* |n Particle Swarm Optimization (PSO), each particle has
its own memory remembering its best known position
so far, and share this information with other particles

e At each iteration, each particle is propelled towards
the area defined by the stochastic average of its own
known best position and the swarm best position

 The notion of memory associated with each particle is
unique to PSO, and this property can be used to induce
niching behaviour

 Aswarm can be divided into two parts:

— an explorer-swarm consisting of the current particles

— a memory-swarm, comprising of only best known
positions of individual particles

X. Li, “Developing niching algorithms in particle swarm optimization,” in Handbook of Swarm Intelligence, ser. Adaptation,
Learning, and Optimization, B. Panigrahi, Y. Shi, and M.-H. Lim, Eds. Springer Berlin Heidelberg, 2011, vol. 8, pp. 67-88.



Speciation-based PSO

An example of how to determine the species seeds from the population at each
iteration. s, s,, and s, are chosen as the species seeds. Note that p follows s,

>
X

D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using speciation,”
IEEE Trans. on Evol. Comput., vol. 10, no. 4, pp. 440-458, August 2006.



Speciation-based PSO

Step 1: Generate an initial population with randomly generated particles;
Step 2: Evaluate all particle individuals in the population;

Step 3: Sort all particles in descending order of their fitness values (i.e., from
the best-fit to least-fit ones);

Step 4: Determine the species seeds for the current population;

Step 5: Assign each species seed identified as the gBest to all individuals
identified in the same species;

Step 6: Adjusting particle positions according to the PSO velocity and
position update equation (1) and (2);

Step 7: Go back to step 2), unless termination condition is met.

2/6/17 41



Ring topology based niching PSO

* Given a reasonably large population uniformly distributed in the
search space, the ring topology based niching PSOs are able to
form stable niches across different local neighbourhoods,
eventually locating multiple global/local optima

* This method can operate as a niching algorithm by using
individual particles’ local memories to form a stable network
retaining the best positions found so far

X. Li, “Niching without niching parameters: Particle swarm optimization using a ring topology,” IEEE Trans. on Evol. Comput.,
vol. 14, no. 1, pp. 150 — 169, February 2010.



Ring topology based niching PSO

* Results on Shubert 2D function (two snapshots
during a simulation run)

X. Li, “Niching without niching parameters: Particle swarm optimization using a ring topology,” IEEE Trans. on Evol. Comput.,
vol. 14, no. 1, pp. 150 — 169, February 2010.
2/6/17 43



Stretching and Deflation in PSO

* Aims to compute all global minimizers, while avoiding
local minimizers, through PSO

* |teratively modifies the objective function by
deflection and stretching

— Knowledge of previously detected optima are incorporated
in the new form

— “Mexican hat” effect: introduction of new local optima

— Overcome such issues by using repulsion technique
— Addition of new control parameters

— Applications in non-linear dynamic systems (periodic
orbits) & game theory (Nash equilibria)

K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis, “Objective function "stretching” to alleviate convergence to local minima,”
Nonlinear Analysis, vol. 47, no. 5, pp. 3419-3424, 2001.

K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global minimizers through particle swarm optimization,” IEEE Trans. on Evol. Compu., vol.
8, no. 3, pp. 211-224, June 2004.



Stretching and Deflation in PSO (Il)
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Fig. 14. Original plot of the Levy no. 5 function in the range [—2, 2]2.
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Other recent niching PSO variants

LIPS: Euclidean-distance-based niching PSO forms niches by using the nearest neighbors to each personal
best in the Fully Informed PSO (FIPS)

— B.Y.Qu, P. N. Suganthan, and S. Das, “A distance-based locally informed particle swarm model for multimodal optimization,”
IEEE Transactions on Evolutionary Computation, vol. 17, no. 3, pp. 387— 402, June 2013.

NichePSO, nbest PSO, and Multi-swarms
—  A.P. Engelbrecht. R. Brits and F. van den Bergh, “A niching particle swarm optimizer,” SEAL 2002, pp. 692—696.

— R.Brits, A. P. Engelbrecht, and F. van den Bergh, “Solving systems of unconstrained equations using particle swarm optimizers,”
Proc. of the IEEE Conf. on Systems, Man, Cybernetics, pp. 102—-107, 2002.

— T.Blackwell and J. Branke, “Multi-swarms, exclusion, and anti- convergence in dynamic environments,” Evolutionary
Computation, IEEE Transactions on, vol. 10, no. 4, pp. 459-472, 2006.

Adaptive Niching PSO (ANPSO) adaptively determines the niche radius by calculating population statistics
at each iteration
— S.Bird and X. Li, “Adaptively choosing niching parameters in a PSO,” in GECCO 2006, 2006, pp. 3—10.

Vector-based PSO (VPSO) treats each particle as a vector and niche identification is done by carrying out
vector operations of the particles. A niche is determined by the radius value based on the distance
between the swarm best and the nearest particle with a negative dot product (i.e., moving in an opposite
direction)
— L. L. Schoeman and A. P. Engelbrecht, “Using vector operations to identify niches for particle swarm optimization,” in Proc. of the
2004 IEEE Conf. on Cybernetics and Intelligent Systems, 2004, pp. 361 — 366.
Recent Developments in PSO, please refer to:

— J.Barreraand C. A. C. Coello, “A review of particle swarm optimization methods used for multimodal optimization,” in
Innovations in Swarm Intelligence, ser. Studies in Computational Intelligence, C. Lim, L. Jain, and S. Dehuri, Eds. Springer Berlin
Heidelberg, 2009, vol. 248, pp. 9-37.

—  X.Li,“Developing niching algorithms in particle swarm optimization,” in Handbook of Swarm Intelligence, ser. Adaptation,
Learning, and Optimization, B. Panigrahi, Y. Shi, and M.-H. Lim, Eds. Springer Berlin Heidelberg, 2011, vol. 8, pp. 67-88.



Niching in Differential Evolution

Differential Evolution (Storn & Price 1995)
DE belongs in the class of EAs
Population-based, few control parameters
Basic Operations:

— Mutation, Crossover, Selection

DE in MMO:

— niching technics,

— specialized search operators (mostly mutation str.)



Mining Differential Evolution’s dynamics

Observation:

DE mutation strategies tend to distribute the individuals of the
population in the vicinity of the minima of the objective function.

@ Exploitative strategies: rapidly gather all the individuals to
the basin of attraction of a single minimum,

@ Explorative strategies: tend to spread the individuals
around many minima.

Case study: Shekel’s Foxholes
« Twenty four separable local minima
* One global minimum

« @ f(-32,32) = 0.998004

M.G. Epitropakis, D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, and M.N. Vrahatis,

“Enhancing differential evolution utilizing proximity- based mutation operators,”, IEEE

Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 99-119, 2011.
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DE dynamics

DE/best/1 population DE/rand/1 population
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DE dynamics

DE/best/1 population DE/rand/1 population
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H-measure

DE’s cluster tendency

e Cluster Tendency (H-measure, Hopkins test)

— Determines the presence or absence of a
clustering structure in a data set

H-measure of DE mutation strategies in the Shifted Sphere function

1

1

0.9 0.9
B DE/best/1
0% DE/rand/1 1 £ o8
" DE/current-to-best/1 7z
DE/best/2 GE)
DE/rand/2 1 s
thy DE/current-to-best/2 T 0.7
[
0.6 I i ol
0.5 : - o
1 10 ool Y2

Generations

H-measure of DE mutation strategies in the Shifted Griewank function

DE/best/1 |
DE/rand/1 ——
DE/current to-best/1 ——
DE/best/i2 —=—
DE/rand/2 —=—
DE/current-to-best/’2 —e—

10 100
Generations

B. Hopkins and J. G. Skellam, “A new method for determining the type of distribution of plant individuals,” Ann. Botany, vol. 18, no. 2, pp. 213-227, 1954.
M.G.Epitropakis, D.K.Tasoulis, N.G.Pavlidis, V.P.Plagianakos, and M. N. Vrahatis, “Enhancing differential evolution utilizing proximity- based mutation
operators,” Evolutionary Computation, IEEE Transactions on, vol. 15, no. 1, pp. 99-119, Feb 2011.



Niching DE: DE/nrand family

* Inspired by this observation, classic DE mutation operators
were altered to incorporate spatial information about the
nearest neighbour concept

* Induce the niching effect, without using any additional
parameter

* Instead of using the base vector the usual way, its nearest
neighbour is always chosen as the actual base vector

@ DE/nrand/1: vi | = x4+ F(xl! —x22),

g+1
@ DE/nrand/2: v\ | = xi™ + F(xp —x2) + F(x — x7*),

x, " is the nearest neighbor of the current individual x},.

M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, , “Finding multiple global optima exploiting differential evolution’s
niching capability,” in Differential Evolution (SDE), 2011 IEEE Symposium on, April 2011, pp. 1-8.



Number of dinstict global minima

DE/nrand family behavior
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Multi-Modal Optimization:
https://mikeagn.github.io/DeMatDEnrand/

DE/NRAND/1 DEMO
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Niching DE: dADE/nrand family

* Similar search as DE/nrand family

» Self-adaptive control parameters (JADE self-
adaptation)

e Utilize dynamic archive:
— put only better solutions in
— if near better contained, re-initialize individual
— identification radius R adapted during run

* Substantially improved performance
* Less sensitive to the population size
* Top participant in CEC 2013/2015 competitions

M. G. Epitropakis, X. Li, and E. K. Burke, “A dynamic archive niching differential evolution algorithm for multimodal optimization,” in
Evolutionary Computation (CEC), 2013 IEEE Congress on, June 2013, pp. 79-86.



Number of distinct global optima
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Niching DE: Other recent variants

DE with restricted neighborhood mutations (speciation, crowding, sharing): each
individual is mutated by randomly selecting individuals within the m-th
neighborhood niche of its base vector

— B.Y.Qu, P. N. Suganthan, and J. J. Liang, “Differential evolution with neighborhood mutation for multimodal
optimization,” Evolutionary Computation, IEEE Transactions on, vol. 16, no. 5, pp. 601-614, Oct 2012.

DE with probabilistic parent selection scheme based on fitness and proximity
information

— S.Biswas, S. Kundu, and S. Das, “Inducing niching behavior in differential evolution through local information sharing,”
Evolutionary Computation, IEEE Transactions on, vol. 19, no. 2, pp. 246-263, April 2015.

DE with parent centric mutation strategies combined with crowding

— S.Biswas, S. Kundu, and S. Das, “An improved parent-centric mutation with normalized neighborhoods for inducing
niching behavior in differential evolution,” IEEE Transactions on Cybernetics, vol. 44, no. 10, pp. 1726-1737, Oct 2014.

Ensemble of niching techniques

— S. Huiand P. N. Suganthan, “Ensemble and arithmetic recombination- based speciation differential evolution for
multimodal optimization,” IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 64-74, Jan 2016

DE with index-based neighborhoods to induce the niching effect

— M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Multi- modal optimization using niching differential evolution
with index- based neighborhoods,” in Proceedings of 2012 IEEE Congress on Evolutionary Computation (CEC’12), June
2012, pp. 1-8.



SOME OTHER STATE-OF-THE-ART
NICHING METHODS



Nearest-better Clustering (l)

* The basic idea: Connect every solution to the nearest

one that is better (in terms of fitness), clustering is done
via cutting the longest lines

* Assumption: Longest edges are connections between
optima

M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual conference
companion on Genetic and evolutionary computation (GECCO '10). ACM, New York, NY, USA, pp. 1711-1718, 2010



Nearest-better Clustering (ll)

NBC works with clustered (left) and randomized
(right) samples

* |tincorporates (&needs) heuristic rule to remove
“the right” longest edges

O global best «pfrom local best O global best «»from local best
X2 T @ local best = from dominated point x2 | © local best —» from dominated point

@ search point @ search point

-
o
-
. ¢
.
.
RS

o
0}
ot
.

x1 x1

M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual conference
companion on Genetic and evolutionary computation (GECCO '10). ACM, New York, NY, USA, pp. 1711-1718, 2010
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NEA2: Niching Evolutionary Algorithm 2

Algorithm 1: NEA?2

1 distribute an evenly spread sample over the search space;

2 apply NBC: separate sample into populations according to clusters;
3 forall the populations do

4 L run local optimization (e.g. CMA-ES) until stop criterion is hit;

// start all over:
if termination then
L goto step 1

(o I

* NEA2: clustering + local optimization

 NBC combined with CMA-ES produces a niching
algorithm that won the top place in the CEC'2013
niching competition

 However, it still needs to set a few niching parameters

M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual conference
companion on Genetic and evolutionary computation (GECCO '10). ACM, New York, NY, USA, pp. 1711-1718, 2010



Niching Migratory Multi-swarm
Optimiser (NMMSO)

* Built on an analysis of top ranked algorithms in CEC’2013 niching
competition to exploit similar characteristics of the winners

v'  self-adaption of search parameters
v' dynamic mode maintenance
v'  exploitative local search

 The basicidea:
— uses concurrent swarms each having strong local search
— each swarm fine-tunes its local mode estimates

— swarms which have improved their mode/niche estimate are paired
with their closest adjacent swarm for potential merging (preventing
duplication of labour)

— New regions in which to search for modes are identified by splitting
away particles from existing (large) swarms

J. E. Fieldsend, "Running Up Those Hills: Multi-Modal Search with the Niching Migratory Multi-Swarm Optimiser," in IEEE
Congress on Evolutionary Computation, 2014, pp. 2593 - 2600.
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RS-CMSA-ES: Covariance Matrix Self
Adaption ES with Repelling Subpopulations

* RS-CMSA adapts and reformulates multiple existing
concepts from different methods

* RS-CMSA can learn the relative size and possibly the
shape of the basins, and properly handle the challenge
of non-circular basins

* No assumption on the distribution of global minima,
the shape or the size of the basins is required.

* No niche radius parameters and for all other
parameters, the default values are shown to be robust
(given a rough estimate for the expected number of
minima)

Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations, Ali Ahrari, Kalyanmoy
Deb and Mike Preuss, doi:_10.1162/EVCO_a_00182




RS-CMSA-ES: Main Components (I)

* Sub-populations to capture different niches
* Archive with adaptive Taboo regions

* Taboo regions are adaptively "".'.'.'." 169505 0%
re-sized and reshaped, differ A ° 590050 0
for different subpopulations. 4“’.‘.....‘ ; ooggooé’o © ¢

. . . e & _ & - o~o o
* The size of the taboo region is ks °coo3 o
. . pet=m——— | [0 000 00
adapted to the basin size. %z & & s w0 o © m

* Taboo regions are the
previously identified basins
and the center of fitter
subpopulations.

* Only critical taboo regions are

C h e C ke d (d) Restart #2: tiomean =0.35 (e) Restart #3:: @womean =0.32 (f) Restart #4: @omean =0.18

Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations, Ali Ahrari, Kalyanmoy
Deb and Mike Preuss, doi:_10.1162/EVCO_a_00182
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RS-CMSA-ES: Main Components (1)

* Core algorithm: Adapted CMSA-ES with elitism
(Beyer and Sendhoff, 2008)

* Arestart mechanism with dependent restarts

* Hill-valley function (Ursem, 1999): checks
whether two solutions share the same basin.

* Semi-random Initialization: maximize the initial
distance between subpopulations and the archive

* Very promising performance: Winner of the
GECCO 2017 competition on niching methods.

Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations, Ali Ahrari, Kalyanmoy
Deb and Mike Preuss, doi:_10.1162/EVCO_a_00182




RLSIS: Restarted Local Search with
Improved Selection of Starting Points

e Stratified sampling procedure for efficient
initialization

* Nearest-better clustering to approximate
modes

* Local search procedure to accurately locate
mode (Nelder-Mead or CMAES)

* Restart procedure

S. Wessing, M. Preuss, and G. Rudolph. Assessing basin identification methods for locating multiple optima. In: Advances in Stochastic
and Deterministic Global Optimization. Springer, 2016.

Simon Wessing. Two-stage methods for multimodal optimization. PhD thesis, Technische Universitat Dortmund, 2015.

Many thanks to Simon Wessing for providing us slides for RLSIS




RLSIS: One-dimensional Problems

1. Stratified sample of 300 . Example
points o A

2. Nearest-better clustering of  osf :
the sample, to obtain o1 | V-
approx. local optima = o4\ /J U \ /

3. Nelder-Mead simplex l oY | /
search for each selected ol \ |
point, to increase precision ool \./ |
(initial step size 10-4) 00 02 04 06 08 10

 Consumed budget = 1000
evaluations



RLSIS: Maximin Reconstruction
Algorithm (MmR)

* Basic principle: maximization of minimal distance
Complement with correction methods for edge effects
— Torus — periodic edge correction (PEC)
— Mirroring = reflection edge correction (REC) (not used here)

e Optional: consider a set of existing points (green points in
(c))
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S. Wessing, M. Preuss, and G. Rudolph. Assessing basin identification methods for locating multiple optima. In: Advances
2/6/17 " in Stochastic and Deterministic Global Optimization. Springer, 2016.



RLSIS: Multi-dimensional Problems

* Restarted Local Search (RLS):
1. Determine a starting point
2. Execute local search (CMA-ES) with this
starting point /\
3. Goto 1. (restart)
Global Local
Phase Phase

New: starting points and found optima are saved in v
an archive and considered by MmR in following

iterations



CHALLENGES IN NICHING METHODS



Challenges in Niching Methods

» Searching Efficiency (local/global search)
 Maintaining found solutions (archives,...)

* Specifying niching parameters (No parameters!)
— Attempting to find a single uniform niche radius
— Dynamic niche radius, instead of fixed one
— Avoid to specify/use niche parameters

* Scalability (dimension, #optima)
 Measuring performance
— Benchmarks or Real-World applications
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BENCHMARK TEST FUNCTIONS FOR
MULTI-MODAL OPTIMIZATION



CEC’2013 niching benchmark

e A common platform for evaluation and
comparisons of different niching algorithms

e 20 benchmark multimodal functions with different
characteristics

* 5accuracy levels: € = {10°1,1072%,1073,10%,10™>}

 The benchmark suite and the performance measures
have been implemented in: C/C++, JAVA, MATLAB &
Python (R to come soon)

X. Li, A. Engelbrecht, and M.G. Epitropakis, “Benchmark Functions for CEC'2013 Special
Session and Competition on Niching Methods for Multimodal Function Optimization”,

Technical Report, Evolutionary Computation and Machine Learning Group, RMIT University,
Australia, 2013.



CEC 2013/2015/2016 competitions

* |EEE CEC niching competitions at 2013,2015 and 2016, with the latest

results available at the following URL:

http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/
http://goanna.cs.rmit.edu.au/~xiaodong/cec15-niching/competition/
http://www.epitropakis.co.uk/cecl6-niching/competition/
https://github.com/mikeagn/CEC2013

y A

A,
tion on Niching M tI}gﬁS\fO’rtMultimodal Optimization

\

i A

The "Competition on Niching Methods for Multimodal Optimization" will be held as part of the |EEE Congress on Evolutionary Computation (IEEE CEC) 20

A suite of twenty benchmark muitimodal functions with different characteristics and levels of difficulty is providéd.
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20 test functions

Id Dim. #GO |Name Characteristics

F, 1 2 Five-Uneven-Peak Trap Simple, deceptive

F> 1 5 Equal Maxima Simple

F3 1 1 Uneven Decreasing Maxima |Simple

F4 2 4 Himmelblau Simple, non-scalable, non-symmetric

Fs 2 2 Six-Hump Camel Back Simple, not-scalable, non-symmetric

Fq 2,3 18,81 |Shubert Scalable, #optima increase with D,
unevenly distributed grouped optima

F; 2,3 36,216 |Vincent Scalable, #optima increase with D,
unevenly distributed optima

Fg 2 12 Modified Rastrigin Scalable, #optima independent from D,
symmetric

Fo 2 6 Composition Function 1 Scalable, separable, non-symmetric

Fio 2 8 Composition Function 2 Scalable, separable, non-symmetric

F, 12,3,5,10 6 Composition Function 3 Scalable, non-separable, non-symmetric

F» |2,3,5,10 8 Composition Function 4 Scalable, non-separable, non-symmetric

X. Li, A. Engelbrecht, and M.G. Epitropakis, “Benchmark Functions for CEC’2013 Special Session and Competition on Niching
Methods for Multimodal Function Optimization”, Technical Report, Evolutionary Computation and Machine Learning Group, RMIT
University, Australia, 2013.
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20 test functions (graphs)
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Determining found global optima

* First we need to specify a level of accuracy (typically 0 <
e <1)
— a threshold value under which we would consider a global
optimum is found

 Second, we assume that for each test function, the
following information is available:

— The number of global optima

— The fitness of the global optima (or peak height), which is
known or can be estimated

— A niche radius value that can sufficiently distinguish two
closest global optima

X. Li, A. Engelbrecht, and M. Epitropakis, “Benchmark functions for cec’2013 special session and competition on
niching methods for multimodal function optimization,” Technical Report, Evolutionary Computation and Machine

Learning Group, RMIT University, 2013.
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Determining found global optima

input : L,,,+cq - a list of individuals (candidate solu-
tions) sorted in decreasing fitness values;
€ - accuracy level; r - niche radius;
ph - the fitness of global optima (or peak height)
output: S - a list of best-fit individuals identified as
solutions
begin
S = 0;
while not reaching the end of L, teq dO

end
end

Get best unprocessed p € Lgorted:

found <+ FALSE;

if d(ph, fit(p)) < €) then

for all s € S do

if d(s,p) <r then
found < TRUE;
break;

end

end

if not found then

let S« SU{p};

end

end

PARAMETERS USED FOR PERFORMANCE MEASUREMENT.

Function r Peak height | No. global optima
F1 (1D) 0.01 200.0 2
F> (1D) 0.01 1.0 5
F3 (1D) 0.01 1.0 1
Fy (2D) 0.01 200.0 4
F5 (2D) 0.5 1.03163 2
Fg (2D) 0.5 186.731 18
F7 (2D) 0.2 1.0 36
Fs (3D) 0.5 2709.0935 81
F7; (3D) 0.2 1.0 216
Fg (2D) 0.01 -2.0 12
Fy (2D) 0.01 0 6
Fip 2D) | 0.01 0 8
F11 2D) | 0.01 0 6
F11 3D) | 0.01 0 6
Fi2 3D) | 0.01 0 8
F11 (5D) | 0.01 0 6
Fi2 (5D) | 0.01 0 8
F11 (10D) | 0.01 0 6
Fi2 (10D) | 0.01 0 8
Fi2 (20D) | 0.01 0 8
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Performance measures

Peak Ratio (PR) measures the average percentage of all
known global optima found over multiple runs:

yNR _ # of Global Optima,
(# of known Global Optima) * (# of runs)

Who is the winner:

@ The participant with the highest average Peak Ratio
performance on all benchmarks wins.

@ In all functions the following holds: the higher the PR value,
the better

PR =

v




CEC 2013/2015 niching competition
top 4 entries

(NMMO) Niching Migratory Multi-Swarm Optimiser:
— J. E. Fieldsend, "Running Up Those Hills: Multi-Modal Search with the Niching

Migratory Multi-Swarm Optimiser," in IEEE Congress on Evolutionary Computation,
2014, pp. 2593 — 2600.

(NEA2) Niching the CMA-ES via Nearest-Better Clustering:

— M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of
the 12th annual conference companion on Genetic and evolutionary computation
(GECCO ’10). ACM, New York, NY, USA, pp. 1711-1718, 2010.

(LSEAGP) Localised Search Evolutionary Algorithm using a Gaussian Process:

— J. E. Fieldsend, "Multi-Modal Optimisation using a Localised Surrogates Assisted
Evolutionary Algorithm," in UK Workshop on Computational Intelligence (UKCI
2013), 2013, pp. 88-95.

(dADE/nrand/1) A Dynamic Archive Niching Differential Evolution algorithm
for Multimodal Optimization:

— M. G. Epitropakis, Li, X., and Burke, E. K., "A Dynamic Archive Niching Differential
Evolution Algorithm for Multimodal Optimization", IEEE Congress on Evolutionary
Computation, 2013. CEC 2013. Cancun, Mexico, pp. 79-86, 2013.



CEC 2013/2015 niching competitions

@ 6 new search algorithms

@ 4 comparators based on the competition @ CEC2013

@ 20 multi-modal benchmark functions

@ 5 accuracy levels e € {1071,1072,107°,107%,107°}

@ Results: per accuracy level & over all accuracy levels

@ Intotal (CEC2013 & CEC2015) 21 algorithms in the
repository: https://github.com/mikeagn/CEC2013
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Benchmark function
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Benchmark function
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Benchmark function
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Benchmark function

Accuracy

Accuracy level 1.0e-5

1.0

0.8

r 0.6

2/6/17

level 10

1.00 -

©

N

a1
1

0.50 -

Peak Ratio in all benchmark functions
3
1

Accuracy level 1.0e-5

Algorithms

E3 ALNM

- CrowdingDE
B3 dADE/nrand/1
B3 DE/nrand/1
B3 LSEAEA

ES LSEAGP

B3 MEA

E3 MSSPSO

B3 NEA2
E3 NMMSO

90




2/6/17

Performance per benchmark
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Performance per algorithm

ALNM CrowdingDE dADE/nrand/1 DE/nrand/1 LSEAEA
1.00- e e U B B l l — N ! B J J — 1
0.75- ] —
o <l —|® * ®lle
* E_ Y o i
0.50- (¢ *l e | *lle 1L
0.25- —‘7
] o ||
e | T I T T
gooo— . ° . ° . .
k. LSEAGP MEA MSSPSO NEA2 NMMSO
© 1.00- S l.+ SR | D L
o T o
0.75- P HR I ° .
‘ e [
0.50- R = ® .
‘ L [
L 4 |° ¢
0.258 ™
_— — ) |:|
0.00- o . ] Sy PR 2 . .

T T LI e | T LI e |
BEWCT—"S A v A N4 Y X 0 NS X o

A i i i < i i i
NPTV 8T H L T8I/ D88 I8 8880

2/6/17 Accuracy Level =




Statistical analysis

ALNM  CrowdingDE dADE/nrand/1 DE/nrand/1 LSEAEA LSEAGP MEA MSSPSO NEA2
p/pp pIpp PPy p/pp plpw pIpy p/pp p/pp p/pp
CrowdingDE —/= N/A N/A N/A N/A N/A N/A N/A N/A
dADE/nrand/1 —/— +/+ N/A N/A N/A N/A N/A N/A N/A
DE/nrand/1 —/= =/= —/— N/A N/A N/A N/A N/A N/A
LSEAEA +/+ +/+ =/= +/+ N/A N/A N/A N/A N/A
LSEAGP —/— +/+ =/= +/+ =/= N/A N/A N/A N/A
MEA —/— —/— —/— —/— —/— —/— N/A N/A N/A
MSSPSO —/— —/— —/— —/— —/— —/— —/— N/A N/A
NEA2 +/+ +/+ +/+ +/+ —/= +/= +/+ +/+ N/A
NMMSO +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ =/=

@ p: Wilcoxon rank-sum test
@ p,: Bonferroni correction

@ + row wins column,

@ —row loses from column,

@ = non-significant differences
@ N/A: Not Applicable



Overall performance
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Participants’ performance

Algorithm Statistics Friedman’s Test
Median Mean  St.D. | Rank Score

NMMSO 0.9885 0.8221 0.2538 1 16.1900
NEA2 0.8513 0.7940 0.2332 2 16.1150
LSEAEA 0.9030 0.7477 0.3236 4 14.5050
dADE/nrand/1 | 0.7488 0.7383 0.3010 5 14.2450
LSEAGP 0.7900 0.7302 0.3268 3 14.7550
CMA-ES 0.7550 0.7137 0.2807 6 14.0800
N-VMO 0.7140 0.6983 0.3307 7 13.7600
ALNM 0.7920 0.6594 0.3897 9 12.4900
PNA-NSGAII 0.6660 0.6141 0.3421 11 11.2700
NEA1 0.6496 0.6117 0.3280 | 14 | 10.5250
DE/nrand/2 0.6667 0.6082 0.3130 | 10 | 11.2950
dADE/nrand/2 | 0.7150 0.6931 0.3174 8 12.8100
DE/nrand/1 0.6396 0.5809 0.3338 | 13 | 10.6150
DELS-aj 0.6667 0.5760 0.3857 | 15 9.6950
CrowdingDE 0.6667 0.5731 0.3612 | 12 | 10.6200
DELG 0.6667 0.5706 0.3925 | 16 9.4400
DECG 0.6567 0.5516 0.3992 | 17 8.9900
IPOP-CMA-ES | 0.2600 0.3625 0.3117 | 18 5.8700
MEA 0.2075 0.3585 0.3852 | 19 5.2750
A-NSGAII 0.0740 0.3275 0.4044 | 20 4.7200
MSSPSO 0.0000 0.2188 0.3913 | 21 3.7350




Discussion

* The competitions gave a boost to the MMO
community

* New competitive and very promising approaches
* Key characteristics of the algorithms:

— New methodologies: active learning, surrogates,
Gaussian Processes, probabilistic classifier for
prediction, archives, hill-valley approaches

— Usage of local models to maintain diversity and
exploit locally the neighborhoods

— Algorithms: EAs, DE, CMA-ES, Multi-swarms, and
Bootstrap-LV sampling.



Other niching benchmark sets

Earliest work on designing niching benchmark functions was carried out by Deb in
his master thesis!

— K. Deb, “Genetic algorithms in multimodal function optimization (master thesis and tcga
report no. 89002),” Tuscaloosa: University of Alabama, The Clearinghouse for Genetic
Algorithms, 1989.

Tunable cosine and quadratic function families

— J. Ronkkonen, “Continuous Multimodal Global Optimization with Differential Evolution Based
Methods. Acta Universitatis Lappeenrantaensis 363, 20009.

Preuss/Lasarczyk generator: mixture of polynomials (MPM)

— Preuss, Lasarczyk. On the importance of information speed in structured populations. In Proc.
PPSN VIII, pp. 91-100, 2004

— improved version (MPM2) in the dissertation of Simon Wessing: Two-stage Methods for
Multimodal Optimization. TU Dortmund, 2015

Gallagher/Yuan tunable generator: mixture of Gaussian distributions

— Gallagher and B. Yuan. A general-purpose tunable landscape generator. IEEE Trans.
Evolutionary Computation, 10(5):590-603, 2006

Simple and composition multimodal functions

— Quetal.B.Y.Qu,J.J. Liang, Z. Y. Wang, Q. Chen, and P. N. Suganthan, “Novel benchmark
functions for continuous multimodal optimization with comparative results,” Swarm and
Evolutionary Computation, vol. 26, pp. 23-34, 2016.



Performance Measuring

* Two main components:
— Subset solution selection
— Performance measuring

optima /|
/ knowledge, / basin
~ | knowledge/

~ solution subset /representing User
~ set (points) selection set m—————

optimization
algorithm

---p Mmeasuring —p/ scalar

M. Preuss, Multimodal Optimization by Means of Evolutionary Algorithms, ser. Natural
Computing Series. Springer International Publishing, 2016.



A note on Performance Measures

indicator short requires f(Z) subset sel. optima known basins known param.
sum of distances SD

SD to nearest neighbor SDNN

Solow-Polasky diversity SPD v
average objective value AOV v

peak ratio PR v v v
quantity-adjusted PR QAPR v v
peak distance PD v v

augmented PD APD v 7 a

peak accuracy PA v v v

averaged Hausdorff distance ~AHD v v
augmented AHD AAHD v v v
basin ratio BR v v v
quantity-adjusted BR QABR v v

basin accuracy BA v v v v
representative 5 selection R5S v

« Different advantages/disadvantages
« Many connections with multi-objective metrics.
* Mostly used currently in literature:

« Peak Ratio (PR), (problematic)

Preuss, Wessing, Measuring Multimodal Optimization Solution Sets with a View to Multiobjective Techniques. In EVOLVE IV, pp. 123-137, 2013
M. Preuss, Multimodal Optimization by Means of Evolutionary Algorithms, ser. Natural Computing Series. Springer International Publishing, 2016.



| www.epitropakis.co.uk/gecco2016/

Niching @ GECCO 2016

HOME OVERVIEW IMPORTANT INFO BENCHMARKS SUBMISSION WINNERS ORGANIZERS

GECCO 2016 Competition on
Niching-Methods for Multimodal
Optimization

1. we are including information on the resources (time, function evaluations)
needed to find the global optima, not only the fraction of successes withina
given time period (number of evaluations), and
2. we take into account the size of the final solution set, and reward small sets
that mostly consist of the sought optima only.

Overview




GECCO 2016 Competition ()

» Largely follows the procedures of the 2013/2015 CEC niching
competitions, adopt new performance criteria:

Improved Scenarios

@ Include information on the resources (time, function
evaluations) needed to find the global optima, not only the
fraction of successes within a given time period (number of
evaluations), and

@ Take into account the size of the final solution set, and
reward small sets that mostly consist of the sought optima
only.




GECCO 2016 Competition (ll)

Three different Scenarios (performance evaluation):

@ Scenario I: Adopt the CEC2013/2015 competition ranking
procedure (based on average Peak Ratio), to facilitate
straight forward comparisons with all previous competition
entries.

@ Scenario lI: Adopt the (static) F1 measure to take into
account the recall and precision of the final solution sets

@ Scenario lll: Adopt the (dynamic) F1 measure integral
over the whole runtime to take into account the
computational efficiency of the submitted algorithm

Ranking based on average values across all
problems/accuracy levels of the aforementioned measures are
used to decide the winner.
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Participants

@ (rlsis): Restarted Local Search with Improved Selection of
Starting Points, Simon Wessing

@ (rs-cmsa-es): Benchmarking Covariance Matrix Self
Adaption Evolution Strategy with Repelling Subpopulations
for GECCO 2016 Competition on Multimodal Optimization,
Ali Ahrari, Kalyanmoy Deb and Mike Preuss

@ (ascga): Adaptive species conserving genetic algorithm,
Jian-Ping Li, Felician Campean

@ (nea2+): Niching the CMA-ES via Nearest-Better
Clustering: First Steps Towards an Improved Algorithm,
Mike Preuss

@ (nmmso) Niching Migratory Multi-Swarm Optimiser, J.
Fieldsend

Baseline algorithms: CMA-ES, IPOP-CMA-ES, NEA1, NEA2



GECCO 2016 Competition Setup

@ 5 new search algorithms

@ 4 classic algorithm comparators

@ 20 multi-modal benchmark functions

@ 5 accuracy levels € € {1071,1072,1073,107%,107°}

@ Results: per accuracy level & over all accuracy levels

@ Latest version always in the repository:
https://github.com/mikeagn/CEC2013
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Benchmark function

Scenario |: Accuracy level 10
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Peak Ratio in all benchmark functions
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Benchmark function

Scenario |: Accuracy level 103
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Benchmark function

Scenario I: Accuracy level 104
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Benchmark function

Scenario |: Accuracy level 10
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Scenario I: Overall performance

1.00 -

o

d

()]
1

0.50 -

Peak Ratio in all benchmark functions

©

N

(&)}
1

All Accuracy levels

Algorithms

E3 ALNM

B3 CrowdingDE
B3 dADE/nrand/1
B8 DE/nrand/1
B3 LSEAEA

ES LSEAGP

B3 MEA

B3 MSSPSO

B3 NEA2

EJ NMMSO

110



Accuracy level 10
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Accuracy level 107
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Accuracy level 103
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Accuracy level 104

Scenario |l
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Accuracy level 10~

Scenario |l
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Scenario ll: Overall performance

All Accuracy levels
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Scenario Ill: Accuracy level 10!
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Scenario lll: Accuracy level 103
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Scenario Ill: Accuracy level 10
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Scenario Ill: Accuracy level 107
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Scenario lll: Overall Performance
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GECCO 2016: Overall Performance

Alg. Sc.l Rank | Sc.l Rank | Sc.lll Rank | Mean Rank | Final Rank
ascga | 0.349 5 0.065 3 0.236 4 4.666 5
nea2+ | 0.688 4 0.720 3 0.811 2 3.000 3

nmmso | 0.701 2 0.091 4 0.218 5 3.666 4

risis 0.698 3 0.799 2 0.663 3 2.666 2

rs-cmsa | 0.827 1 0.900 1 0.839 1 1.000 1

Note: The algorithms have not been fine-tuned for the specific benchmark suite!
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GECCO 2016: Winners

znd

RLSIS

= Algorithm:
rlsis: Restarted Local Search with Improved
Selection of Starting Points

2 People:
Simon Wessing

i= Characteristics:
Algorithm: CMA-ES,
Techniques: initial sampling, restart local search,
solution set post-processing.

1st 3rd

RS-CMSA-ES NEA2+

= Algorithm: = Algorithm:
rs-cmsa-es: Covariance Matrix Self Adaption nea2+: Niching the CMA-ES via Nearest-Better
Evolution Strategy with Repelling Subpopulations  Clustering: First Steps Towards an Improved

Algorithm
2 People:
Ali Ahrari, Kalyanmoy Deb and Mike Preuss 2 People:
Mike Preuss
i= Characteristics:
Algorithm: CMA-ES, i= Characteristics:
Techniques: sub-populations, repelling, solution Algorithm: CMA-ES,
set post-processing. Techniques: Nearest-Better Clustering, solution set
post-processing.
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Discussion: GECCO 2016

* The competitions gave a boost to the MMO
community

* New competitive and very promising approaches
* Key characteristics of the algorithmes:

— New methodologies: repelling, restarts, clustering,
surrogates, hill-valley approaches, post-processing

— Usage of local models to maintain diversity and
exploit locally the neighborhoods

— Algorithms: CMA-ES, GAs, Evolutionary Algorithms,
and Multi-swarms
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NICHING IN SPECIALIZED TASKS



Niching In Specialized Tasks
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NICHING IN DYNAMIC
OPTIMIZATION



SPSO for tracking optima

* In adynamic environment the goal is to track as closely as possible the
dynamically changing optima
e A useful strategy to ensure good tracking of the global optimum is to

maintain multiple species at all the optima found so far, regardless
whether they are globally or locally optimal

* By maintaining individual species at each local optimum, it helps
tremendously in case when such a local optimum turns into a global
optimum

X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation and adaptation in a dynamic environment,”
in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO ’06. New
York, NY, USA: ACM, 2006, pp. 51-58.



Niching in Dynamic Environments

* Vector-based PSO: utilize directional information provided by the
particles in a swarm to adaptively form niches in parallel to track multiple
dynamically changing optima

— |.Schoeman and A. Engelbrecht, “Niching for dynamic environments using particle swarm optimization,” in
SEAL, 2006, vol. 4247, pp. 134-141.

* rSPSO: simple regression method with Speciation-based PSO to speed up
local convergence and to estimate and predict the positions of the
changing optima

— S. Bird and X. Li, Computational Intelligence in Expensive Optimization Problems. Springer, 2010, Improving
Local Convergence in Particle Swarms by Fitness Approximation Using Regression, pp. 265-293.

— S. Bird and X. Li, “Using regression to improve local convergence,” in Evolutionary Computation, 2007. CEC
2007. IEEE Congress on, Sept 2007, pp. 592-599.

* Multi-population niching based algorithms

— D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using
speciation,” IEEE Trans. on Evol. Comput., vol. 10, no. 4, pp. 440-458, August 2006.

— T. Blackwell and J. Branke, “Multi-swarms, exclusion, and anti- convergence in dynamic environments,”
Evolutionary Computation, IEEE Transactions on, vol. 10, no. 4, pp. 459-472, 2006.

— X.Li, J.Branke, and T.Blackwell, “Particle swarm with speciation and adaptation in a dynamic environment,” in
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, ser. GECCO '06. New
York, NY, USA: ACM, 2006, pp. 51-58.

— T Blackwell, J. Branke, and X. Li, Swarm Intelligence: Introduction and Applications. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, ch. Particle Swarms for Dynamic Optimization Problems, pp. 193-217.



NICHING IN MULTI-OBJECTIVE
OPTIMIZATION



EMO solution diversity

e Although diversity maintenance is a much common issue in any
population-based meta-heuristics, it is possible to use niching
methods for maintaining solution diversity

— Early example is the Niched-Pareto GA (NGPA) (Horn, et al., 1994) ,

which is a multi-objective GA using a variant of fitness sharing to
maintain Pareto solution diversity in the objective space

— Another example is the crowding distance metric used in NSGA-I|
(Deb, et al., 2002)

* Much attention has been given to maintaining solution
diversity in the objective space

* However, little attention has been given to how to maintain
solution diversity in the decision space

J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm for Multiobjective Optimization,” in Proc. of
the First IEEE Conference on Evolutionary Computation, vol. 1. IEEE Service Center, 1994, pp. 82-87.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” Evolutionary
Computation, IEEE Transactions on, vol. 6, no. 2, pp. 182—197, Apr 2002.



Diversity in both spaces

« A MOEA (e.g., MOEA Niching-CMA) can produce a much more diverse
set of efficient solutions (i.e., solutions in the decision space), without
sacrificing objective space diversity (Shir, et. al. 2009)

[ ) o
e © - ©
o ® \0.
o © —®
) *f @ )
o— o @0
Decision space Objective space

An example where two solutions that are close in the objective space but their
corresponding points in the decision space are further apart

O. M. Shir, M. Preuss, B. Naujoks, and M. Emmerich, “Enhancing decision space diversity in evolutionary multiobjective
algorithms,” in Proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization, ser. EMO
'09. Berlin, Heidelberg: Springer- Verlag, 2009, pp. 95-109.
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Omni-Optimizer

Allows degeneration of NSGA-Il into a single objective
multimodal optimization method (i.e., a niching method)

A variable space crowding distance metric is used to
encourage distant solutions in the decision space to
remain in the population

Distant solutions with similar or equal objective function
values will survive

Omni-Optimizer can degenerate to a niching method for
single/multi-objective multi-modal optimization, capable
of finding multiple Pareto-optimal fronts

K. Deb and S. Tiwari, “Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization.”
European Journal of Operational Research, vol. 185, no. 3, pp. 1062—1087, 2008.
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NICHING FOR CLUSTERING AND
MACHINE LEARNING



Clustering

* Aim: to group data points into clusters, such that
— points in each cluster have a high degree of similarity
— points in different clusters have a high degree of
dissimilarity
— A similarity metric is often based on some distance
measure between these data points

* Both clustering and niching share some common
features:
— data points seen as individuals
— clusters as niches

* Clustering methods can be used to do niching,
and vice versa.
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Clustering examples

MiniBatchKMeansAffinityPropagation MeanShift SpectralClustering Ward

Figure from: http://scikit-learn.org
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Clustering for Niching

e Clustering methods (k-means, NBC, etc) can be used to
sub-divide the population into clusters (or niches)

— |dentification of species/niches

— Species conserving, topological species conservation
* Exploit each of the niches accordingly

— CMA-ES (NEA2), GAs (SCGA, TSC), DE/PSO

* Other characteristic examples include:

— Clustering-based niching methods based on dynamic niche
sharing, dynamic niche clustering, and dynamic fitness
sharing

— Automatically estimate clustering parameters (such as k in
k-means)

X.Yin and N. Germay, “A fast genetic algorithm with sharing scheme using cluster analysis methods in multi-modal
function optimization,” in the International Conference on Artificial Neural Networks and Genetic Algorithms, 1993, pp.
450-457.



Clustering for Niching (references)

X.Yin and N. Germay, “A fast genetic algorithm with sharing scheme using cluster analysis methods
in multi-modal function optimization,” in the International Conference on Artificial Neural Networks
and Genetic Algorithms, 1993, pp. 450—457.

M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual
conference companion on Genetic and evolutionary computation (GECCO ’10). ACM, New York,
NY, USA, pp. 1711-1718, 2010

A. Della Cioppa, C. De Stefano, and A. Marcelli, “Where are the niches? dynamic fitness sharing,”
Evolutionary Computation, IEEE Transactions on, vol. 11, no. 4, pp. 453—465, Aug 2007.

B. L. Miller and M. J. Shaw, “Genetic algorithms with dynamic niche sharing for multimodal function
optimization,” in Proceedings of the 1996 IEEE International Conference on Evolutionary
Computation, May 1996, pp. 786—791.

J. Gan and K. Warwick, “Dynamic niche clustering: a fuzzy variable radius niching technique for
multimodal optimisation in gas,” in Proc. of the 2001 Congress on Evolutionary Computation. IEEE
Press, 2001, pp. 215-222.

J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species conserving genetic algorithm for
multimodal function optimization,” Evol. Comput., vol. 10, no. 3, pp. 207-234, 2002.

C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu, “Multimodal optimization by means of a
topological species conservation algorithm,” Evolutionary Computation, IEEE Transactions on, vol.
14, no. 6, pp. 842-864, Dec 2010.

D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis, “Clustering in evolutionary algorithms to
efficiently compute simultaneously local and global minima,” in 2005 IEEE Congress on
Evolutionary Computation, vol. 2, Sept 2005, pp. 1847-1854 Vol. 2.

V. P. Plagianakos, “Unsupervised clustering and multi-optima evolutionary search,” in 2014 IEEE
Congress on Evolutionary Computation (CEC), July 2014, pp. 2383—-2390.



Niching for clustering (I)

* A clustering problem can be formulated as a multi-modal
optimization problem, and be handled by a niching method.

* We can define a density-based fithess function that would
reach a maximum at every good cluster center.

* The value of the fitness function will be high for points falling
within the boundary of a cluster, and low for points falling
outside of the cluster.

* The results in Nasraoui, et al. (2005) suggested that the
niching approach for clustering to be less prone than non-
niching techniques to premature convergence, noise, and
initialization.

O. Nasraoui, E. Leon, and R. Krishnapuram, “Unsupervised niche clustering: Discovering an unknown number of clusters in noisy data
sets,” in Evolutionary Computation in Data Mining, ser. Studies in Fuzziness and Soft Computing, A. Ghosh and L. Jain, Eds. Springer
Berlin Heidelberg, 2005, vol. 163, pp. 157-188.



Niching for clustering (ll)

i | RS | 1

Nasraoui, et al. (2005) proposed an
Unsupervised Niche Clustering
algorithm (UNC) and evaluated its
performance under different conditions
related to cluster size, density, noise
contamination, orientation, and number
of clusters. Their results were presented
on the 9 noisy data sets (see the figure
on the right):

) original data set;

results of UNC;

c) results of K-means with pre-
specified correct ¢ (the number of
clusters);

(d) results of PCM with pre-specified

correct c;
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N
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0. Nasraoui, E. Leon, and R. Krishnapuram, “Unsupervised niche clustering: Discovering an unknown number of clusters in noisy data sets,” in
Evolutionary Computation in Data Mining, 2005, vol. 163, pp. 157—188.
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Feature Selection

 The aim of feature selection is to choose features

that allow us to discriminate patterns belonging
to different classes

* Feature selection algorithms are generally
classified into

— wrapper methods make use of a learning classifier’s

performance to evaluate the suitability of the feature
subset

— filter methods treat the selection of feature subsets

as a pre-processing step, independent from the
learning classifier.
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Niching for Feature Selection

Optimal subset of features might not be unique
— Merit for obtaining all such optimal subsets before the final choice

Different optimal subsets of features are considered as different optima
on a multi-modal fitness landscape (searched by niching methods)

Example representation of a subset of the selected features: binary
string

— 1 indicates that the j-th feature is included in the subset, otherwise (0) the
feature is excluded

Evaluate the goodness of a subset:
— the binary string is fed into a learning classifier (e.g., neural network)

Fitness function takes into account:
— the classifier accuracy term and
— the penalty for selecting a large number of features

F. Brill, D. Brown, and W. N. Martin, “Fast generic selection of features for neural network classifiers,” Neural Networks,
IEEE Transactions on, vol. 3, no. 2, pp. 324-328, Mar 1992.



Niching for Machine Learning

 Machine Learning (ML) plays an increasingly important role
in data analytics these days:

— predict by learning from data

* Many real-world problems are often too large and complex
to be solved by a single machine learning model

* An effective approach may be to employ an ensemble of
learning models, each specializing in solving a subtask of a
much larger problem.

* Meta-heuristic algorithms can be used to evolve a
population of ML models

— e.g., an ensemble of neural networks, or a set of knowledge
rules.

Y. Liu and X. Yao, “Simultaneous training of negatively correlated neural networks in an ensemble,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 29, no. 6, pp. 716—725, Dec 1999.
M. L. Wong and K. S. Leung, Data Mining Using Grammar-Based Genetic Programming and Applications. Norwell, MA, USA: Kluwer

Academic Publishers, 2000.



Evolving neural network ensembles

Niching techniques (Speciation) used to evolve a diverse but accurate
set of specialist modules, which can be then combined to perform
learning tasks

Evolutionary Ensembles with Negative Correlation Learning (EENCL)[Liu
et al. (2000)] automatically determine the number of individual
neural networks in an ensemble

Motivation: A population contains more information than a single
individual
Fitness sharing was adopted to promote diversity in the ensemble:

— If one training example is learnt correctly by n individual neural networks,
then each of these n neural networks receives a fitness value 1/n, and the
remaining neural networks in the ensemble receive zero fitness

— This procedure is repeated for all examples in the training set

— The final fitness of an individual is determined by summing up its fitness
values over all training examples

Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative correlation learning,” IEEE Transactions on Evolutionary
Computation, vol. 4, no. 4, pp. 380-387, Nov 2000.



Learning multiple rules from data

* Indata mining: meta-heuristics can be used to extract knowledge such
as rules and use these rules to solve classification problems

— the Michigan approach: where each individual encodes a single
rule, and

— the Pittsburgh approach where each individual represents multiple
rules, i.e., a rule set.

* Since it is often difficult to capture the knowledge of a data set by a
single rule, multiple rules are often required

* Niching methods can be used to evolve multiple different good
individuals that are required to produce a rule set:

— See for example, in the idea of “token competition” [Wong and
Leung (2000)]

M. L. Wong and K. S. Leung, Data Mining Using Grammar-Based Genetic Programming and Applications. Norwell, MA, USA: Kluwer
Academic Publishers, 2000.

K. Tan, Q. Yu, C. Heng, and T. Lee, “Evolutionary computing for knowledge discovery in medical diagnosis,” Artificial Intelligence in Medicine,
vol. 27, pp. 129-154, 2003.



IEEE CIS TASK FORCE ON MULTI-
MODAL OPTIMIZATION



|EEE CIS Taskforce on MMO

IEEE Computational Intelligence Society

MIMICKING NATURE FOR PROBLEM SOLVING

Ihe Key objective IS to promote research on multi-modal optimization,
including its development, education and understanding of sub topic areas of
multi-modal optimization. Further info: http://www.epitropakis.co.uk/ieee-
mmo

Current chair: Michael G. Epitropakis (Lancaster University, UK).

Vice-Chairs: Andries Engelbrecht (University of Pretoria, South Africa), and
Xiaodong Li (RMIT University, Australia).

Members: Carlos A. Coello Coello, Kalyanmoy Deb, Andries Engelbrecht,
Michael G. Epitropakis, Jonathan Fieldsend, Jian-Ping Li, Xiaodong Li, Jonathan
Mwaura, Konstantinos Parsopoulos, Vassilis Plagianakos, Mike Preuss, Bruno
Sareni, Ofer M. Shir, Patrick Siarry, P. N. Suganthan, Michael N. Vrahatis, Simon

Wessing, Xin Yao.
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|EEE CIS Taskforce on MMO

IEEE Computational Intelligence Society

MIMICKING NATURE FOR PROBLEM SOLVING

* Past and planned activities:

2/6/17

IEEE CEC 2010, 2013, 2015, 2016 and 2017 special sessions and/or
competitions on “Niching Methods for Multimodal Optimization”.

GECCO 2016, 2017 competitions on “Niching Methods for Multimodal
Optimization”.

International Workshop on "Advances in Multimodal Optimization"”, PPSN
2014, PPSN 2016.

Tutorials at WCCI 2016, PPSN 2014, CEC 2017.
More activities to come soon...
* Arepository for related material, publications and source code.

150



Summary

* Niching methods have been studied for the past few decades, and
now experience a revival, as more people from diverse backgrounds
find its relevance in their own disciplinary areas.

* Niching methods can be developed using other meta-heuristics, apart
from evolutionary algorithms.

* Niching has its application in many problem solving domains, e.g.,
dynamic optimization and multi-objective optimization.

* A good starting point for new comers: several survey papers are
available, plus recently a new book by Mike Preuss.

 Many open research questions and challenges to be addressed.
 Many possible real-world applications of niching methods.

S. Das, S. Maity, B.-Y. Qu, and P. Suganthan, “Real-parameter evolutionary multimodal optimization - a survey of the state-of-
the-art,” Swarm and Evolutionary Computation, vol. 1, pp. 71-88, June 2011.

O. Shir, “Niching in evolutionary algorithms,” Handbook of Natural Computing: Theory, Experiments, and Applications, pp.
1035-1069, 2012.

X. Li, “Developing niching algorithms in particle swarm optimization,” in Handbook of Swarm Intelligence, ser. Adaptation,
Learning, and Optimization, B. Panigrahi, Y. Shi, and M.-H. Lim, Eds. Springer Berlin Heidelberg, 2011, vol. 8, pp. 67-88.

M. Preuss, Multimodal Optimization by Means of Evolutionary Algorithms, ser. Natural Computing Series. Springer
International Publishing, 2016.



New book on MMO!!I

* Describes state of the artin
algorithms, measures and test
problems

* Approaches multimodal
optimization algorithms via
model-based simulation and
statistics

* Valuable for practitioners with
real-world black-box problems

DOI:10.1007/978-3-319-07407-8
http://www.springer.com/gp/book/9783319074061
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Mike Preuss

Multimodal

Optimization
by Means of
Evolutionary

Algorithms

@ Springer

152



Recent Survey on MMO @ |EEE TEVC

Seeking Multiple Solutions: An Updated Survey on
Niching Methods and Their Applications

Xiaodong Li, Michael G. Epitropakis, Kalyanmoy Deb, Andries Engelbrecht

Abstract—Multi-Modal Optimization (MMO) aiming to locate
multiple optimal (or near-optimal) solutions in a single simulation
run has practical relevance to problem solving across many fields.
Population-based meta-heuristics have been shown particularly
effective in solving MMO problems, if equipped with specifically-
designed diversity-preserving mechanisms, commonly known as
niching methods. This paper provides an updated survey on nich-
ing methods. The paper first revisits the fundamental concepts
about niching and its most representative schemes, then reviews
the most recent development of niching methods, including novel
and hybrid methods, performance measures, and benchmarks
for their assessment. Furthermore, the paper surveys previous
attempts at leveraging the capabilities of niching to facilitate
various optimization tasks (e.g., multi-objective and dynamic
optimization) and machine learning tasks (e.g., clustering, feature
selection, and learning ensembles). A list of successful applica-
tions of niching methods to real-world problems is presented
to demonstrate the capabilities of niching methods in providing
solutions that are difficult for other optimization methods to
offer. The significant practical value of niching methods is clearly
exemplified through these applications. Finally, the paper poses
challenges and research questions on niching that are yet to be
appropriately addressed. Providing answers to these questions is
crucial before we can bring more fruitful benefits of niching to
real-world problem solving.

Index Terms—Niching methods, Multi-modal optimization,
Meta-heuristics, Multi-solution methods, Evolutionary computa-
tion, Swarm intelligence.

The goal of locating multiple optimal solutions in a single
run by niching methods contrasts sharply with the goal of a
classic optimization method [2], which usually starts from an
initial single point and iteratively improving it, before arriving
at one final solution. Since it is not guaranteed that starting
at different initial points will arrive at different solutions with
multiple runs, classic optimization methods are not suited for
the purpose of locating multiple solutions. This goal is also
different from the usual single-optimum seeking mechanism
employed by a standard meta-heuristic method. In literature,
sometimes “multi-modal optimization” also refers to seeking a
single optimum on a multi-modal fitness landscape. To avoid
this confusion and to be more precise, in this paper we also
refer to niching methods as “multi-solution” methods.

Classic niching methods, including fitness sharing [3] and
crowding methods [4], were developed in the early 70s and
80s. In subsequent years, many niching methods have been
proposed. Some representative examples include deterministic
crowding [5], derating [6], restricted tournament selection
[7], parallelization [8], clustering [9], stretching and deflation
[10], [11], and speciation [12], [13]. Initially, niching methods
were developed for Evolutionary Algorithms (EAs). How-
ever, recently niching methods were also developed for other
meta-heuristic optimization algorithms [14], such as Evolu-

X. Li; M. Epitropakis; K. Deb; A. Engelbrecht, "Seeking Multiple Solutions: an Updated Survey on
Niching Methods and Their Applications," in IEEE Transactions on Evolutionary Computation, doi:
10.1109/TEVC.2016.2638437



Thank you!

Questions?

Closely follow
IEEE CIS Taskforce on MMO
activities!
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