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Optimization?
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Curiosity's view of "Mount 
Sharp" (September 9, 

2015)

Mount Sharp rises from the 
middle of Gale Crater; the green 
dot marks Curiosity's landing site 
(north is down).

Source: https://en.wikipedia.org/wiki/Curiosity_(rover)



General	Notes

• More	questions	than	answers	in	Multi-Modal	
Optimization	(MMO)

• Limited	theoretical	advances/strict	formulations	

• Huge	amount	of	literature	(from	the	80s	onwards)

• Tutorial:	a	“short”	presentation	on	advances	in	the	
field.

• Stay	connected…	More	to	come	in	the	near	future…

• Please	interrupt for	questions/comments

• Suggestions for	future	work	are	more	than	welcome
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Outline

• Background	on	multimodal	optimization
• What	are	the	benefits	for	studying	MMO?
• What	are	niching	methods?	
• Some	real-world	examples
• Classic	niching	methods
• Niching	methods	derived	from	PSO	and	DE
• Other	state-of-the-art	niching	methods
• Niching	benchmark	suites	and	performance	measures
• Niching	in	specialized	tasks

– Dynamic	and	multi-objective	optimization
– Clustering,	feature	selection,	and	machine	learning

• IEEE	CIS	Taskforce	on	Multi-Modal	Optimization
• Discussion	and	summary
• References
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What	is	multi-modal	optimization?
• Multi-modal	Optimization	(MMO):		to	locate	multiple	optimal	(or	close	

to	optimal)	solutions	in	the	search	space

– This	is	different	from	a	conventional	optimization	method	which	has	a	common	

goal	of	seeking	to	locate	a	single	global	optimum

• A	rough	definition:
In	a	multimodal	optimization	task,	the	main	purpose	is	to	find	multiple	
optimal	solutions	(global	and	local),	so	that	the	user	can	have	a	better	
knowledge	about	different	optimal	solutions	in	the	search	space	and	as	

and	when	needed,	the	current	solution	may	be	switched	to	another	

suitable	optimum	solution

Deb,	Saha:	Multimodal	Optimization	Using	a	Bi-Objective	Evolutionary	Algorithm,	ECJ,	2012
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What	is	multi-modal	optimization?	(II)

• MMO problems	represent	an	important	class	of	optimization	

problems

• Many	real-world	optimization	problems:
– multimodal	by nature
– multiple	satisfactory	solutions	exist	(several	real-world	examples	of	MMO	

problems	are	provided	in	subsequent	slides)

• From	a	decision	maker’s	point	of	view:	
– it	might	be	desirable	to	locate	all	global	optima	and/or	some	local	optima	

that	are	also	considered	as	being	satisfactory

– Better	knowledge	of	alternative	solutions

2/6/17 7



Methods	for	MMO

• Optimization	methods	specifically	designed	for	solving	MMO	

problems:

– often	called	multimodal	optimization	or	niching	methods
– predominately	developed	from	the	field	of	meta-heuristic	algorithms
– Covers	the	family	of	population-based	stochastic	optimization	algorithms,	

including	evolutionary	algorithms,	evolutionary	strategies,	particle	swarm	

optimization,	differential	evolution,	and	so	on

• These	meta-heuristic	algorithms	are	shown	particularly	effective	
in	solving	multimodal	optimization	problems,	if	equipped	with	

specifically	designed	diversity	preserving	mechanisms,	commonly	

referred	to	as	niching	methods
• Two-fold	aim:	accurately	locate and	robustly	maintainmultiple	

optima

2/6/17 8



What	are	the	benefits?

• A	decision	maker	may	be	interested	to	know	whether	there	exist	

multiple	equally	good	solutions	before	making	a	final	decision

• Important	for	a	sensitivity	study	of	a	problem,	and	helps	develop	

more	robust	solutions	to	the	problem
• Plays	an	important	role	in	keeping	a	diverse	population	of	

candidate	solutions,	hence	helps	prevent the	population	from	

converging	prematurely	to	a	sub-optimum

• May	increase	the	probability	of	finding	the	global	optimum

2/6/17 9



Different	scenarios

• One-global	optimum:	

– Looking	for	the	global	optimum	solution	only	(not	MMO)

• All-global	optima:	

– Find	all	the	global	optimum	solutions

– Benchmark	problems	of	the	CEC	2013/2015/2016	niching	
competition	series	belong	here

• All-known	optima:	

– Find	all	local	and/or	global	optimal	solutions

• Approximate	set	of	solutions:	

– Locate	as	many	as	possible	(subset)	optimal	solutions	
(global/local)	that	are	well	distributed	over	the	search	space

2/6/17 10
Mike Preuss. 2015. Multimodal Optimization. GECCO Companion '15, http://dx.doi.org/10.1145/2739482.2756572



Ecological	inspiration
• In	natural	ecosystems,	individual	species	must	compete	to	survive	by	

taking	on	different	roles.	Different	species	evolve	to	fill	different	niches	(or	
subspaces)	in	the	environment	that	can	support	different	types	of	life

2/6/17 11



What	are	niching	methods?
• According	to	the	Oxford	Dictionary,	a	niche refers	to	“a	role	taken	by	

a	type	of	organism	within	its	community”;	and	a	species refers	to	“a	
group	of	living	organisms	consisting	of	similar	individuals	capable	of	
exchanging	genes	or	interbreeding”

• These	concepts	of	niches,	species	and	speciation	can	be	adopted	in	
an	EA	to	encourage	an	EA	population	to	evolve	different	species	
targeting	different	optimal	solutions	in	the	search	space

2/6/17 12



MMO	Publication	trends
• Despite	niching	methods	first	appeared	more	than	30	
years	ago,	currently	niching	techniques	are	experiencing	a	
revival,	attracting	researchers	from	across	a	wide	range	of	
research	fields

2/6/17 13
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MMO	Application	areas
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Subject

Agricultural and Biological Sciences
Arts and Humanities
Biochemistry, Genetics and Molecular Biology
Business, Management and Accounting
Chemical Engineering
Chemistry
Computer Science
Decision Sciences
Earth and Planetary Sciences
Economics, Econometrics and Finance
Energy
Engineering
Environmental Science
Immunology and Microbiology
Materials Science
Mathematics
Medicine
Multidisciplinary
Neuroscience
Nursing
Pharmacology, Toxicology and Pharmaceutics
Physics and Astronomy
Psychology
Social Sciences



REAL-WORLD	APPLICATIONS
Multi-Modal	Optimization
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Engineering	example:	truss	topology	design

• In	topology	optimization,	the	connectivity	of	members	in	a	truss	is	to	
be	determined.		There	exist	multiple	different	topologies	with	almost	
equal	overall	weight	in	truss-structure	design	problems	as	the	
members	in	the	ground	structure	increase

• The	resulting	solution	of	truss-structure	optimization	design	problems	
becomes	‘‘multi-modal’’	with	large	number	of	truss	members

2/6/17 16

Some nodes in the ground 
structure may or may not be 

removed. The optimal structure is 
found as a subset of the ground 

structure

Deb K, Gulati S. “Design of truss-structures for minimum weight using genetic algorithms,” Finite Elements Anal Des 2001; 
37: 447–65.
G.-C. Luh and C.-Y. Lin, “Optimal design of truss-structures using particle swarm optimization,” Computers and Structures, 
vol. 89, no.23-24, pp. 2221 – 2232, Dec. 2011.



Truss	topology	design
• Sharing	scheme	is	used	to	compute	the	similarity	between	

different	topology	design	solutions

• The	sharing	fitness	is	a	reduced	one	from	the	original	fitness,	

in	order	to	discourage	solutions	in	the	vicinity

2/6/17 17

Binary PSO is run based 
on the sharing fitness 
values, and multiple 
dissimilar truss 
topologies are derived 
and saved



Truss	topology	design

2/6/17 18
Multiple optimal truss topologies found by BPSO with niching.



Trust	structure	design	using	Bilevel	and	

niching	aspects
• Formulate	the	truss	problem	as	

a	bilevel optimization	problem

• A	new	bilevel	PSO	niching	
method	locates	multiple	
optimal	solutions

• Stable	topologies	can	be	found	
in	the	upper	level

• The	optimized	sizes	of	the	
members	of	these	topologies	
can	be	found	in	the	lower	level

• Niching at	the	upper	level
• Standard	optimizer	is	used	at	

the	lower	level	to	optimize	a	
bilevel	truss	problem	

2/6/17 19

Md. Jakirul Islam, Xiaodong Li, and Kalyanmoy Deb. 2017. Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary Algorithms. In 
Proceedings of GECCO ’17, Berlin, Germany, July 15-19, 2017, DOI: h p://dx.doi.org/10.1145/3071178.3071251 



Trust	structure	design	examples

2/6/17 20
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Figure 6: Illustration of 25-member, 10-node ground struc-
ture.

Figure 7: Four design solutions obtained by the proposed
method from 25-member, 10-node ground structure.

Table 3: Member areas (in2) of the optimized trusses of 25-
member, 10-node ground structure.

Proposed
Mem. No. Fig. 7(a) Fig. 7(b) Fig. 7(c) Fig. 7(d) Deb [4] Li [18] Kaveh [10]

0 - 0.0000 - 0.0000 - 0.010 0.010
1,2,3,4 2.0840 2.0787 2.1109 2.1113 2.0370 1.970 1.910
5,6,7,8 2.4451 2.4537 2.4346 2.4382 2.9690 3.016 2.798

9,10,11,12 - - 0.0000 0.0000 - 0.010 0.010
13,14,15,16 0.8880 0.8917 0.8893 0.8878 0.6990 0.694 0.708
17,18,19,20 1.1924 1.1870 1.1791 1.1781 1.6440 1.681 1.836
21,22,23,24 3.0000 3.0000 3.0000 3.0000 2.6580 2.643 2.645

Weight (lb) 524.99 524.99 524.99 524.99 544.85 545.19 545.09
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Figure 8: Illustration of a two-tire, 39-member, 12-node
ground structure.

Figure 9: Optimal trusses for 39-member, 12-node ground
structure derived employing the proposed niching method.

(A0
min ) and upper (A0

max ) bounds of the member areas are set to
0.0 and 2.5 in2, respectively and a critical member area of 0.05 in2
is chosen.

Fig. 9 shows the four optimal/near-optimal designs obtained by
the proposed niching method. �e member areas of these trusses
are listed in Table 4. It can be observed that the obtained trusses
have almost the same weight values (191.16 lb, 191.18 lb, 192.80 lb,
and 193.42 lb), but either their members’ connectivity i.e., topol-
ogy, or members’ cross-sectional areas i.e., sizes, are very di�erent
from each other (see Table 4). �is shows that for the 39-member
truss, the proposed method can provide multiple topology and size
solutions simultaneously in a single run.

Fig. 10(a-b) illustrates two optimal trusses employed by Luh and
Li [21] with overall weights of 195.52 lb and 193.01 lb, respectively.
In addition, Fig. 10(c)-10(d) show two other optimal trusses obtained
by Deb and Gulati [4] with overall weights of 198 lb and 196.54 lb,
respectively. It can be observed that the trusses in Fig. 9(a), 9(b),
and 9(d) are similar to the trusses in Fig. 10(a) and 10(c). However,
the weights (191.16 lb, 191.18 lb, and 193.42 lb, respectively) of the
obtained trusses in Fig. 9 are less than the weights (195.52 lb and
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Md. Jakirul Islam, Xiaodong Li, and Kalyanmoy Deb. 2017. Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary 
Algorithms. In Proceedings of GECCO ’17, Berlin, Germany, July 15-19, 2017, DOI: h p://dx.doi.org/10.1145/3071178.3071251 



Continuum	structural	topology	optimization
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G.-C. Luh, C.-Y. Lin, Y.-S. Lin, “A binary particle swarm optimization for continuum structural topology optimization”,  
Applied Soft Computing, Volume 11, Issue 2, March 2011, Pages 2833-2844, ISSN 1568-4946,



Drug	Molecule	Design	(I)

• Search	for	molecular	structures	with	specific	
pharmacological	or	biological	activity	that	influence	
the	behavior	of	certain	targeted	cells

• Objectives:	Maximization	of	potency	of	drug	&	
Minimization	of	side-effects

• Aim: provide	the	medicinal	chemist	a	set	of	diverse	
molecular	structures	that	can	be	promising	candidates	
for	further	research
– Fit	solutions	may result	in	finding	structures	that	fail	in	
practice

– The	chemist	desires	a	set	of	promising	structures	rather	
than	only	one	single	solution
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J. W. Kruisselbrink, A. Aleman, M. T. M. Emmerich, A. P. Ijzerman, A. Bender, T. Baeck, and E. van der Horst, “Enhancing search space 
diversity in multi-objective evolutionary drug molecule design using niching,” GECCO’09, 2009, pp. 217–224.
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Abstract�In this paper, we present a new approach for 
automatic design of electrodes. The investigated method consists 
in identifying an optimal shape from an optimal equipotential 
resulting from a system of point charges. The electric field and 
potential are computed using the point charge simulation 
method. Niching genetic algorithms and constrained 
optimization techniques are applied to the electrode benchmark 
in order to find multiple optimal profiles. 

 
Index terms�Genetic algorithms, niching, shape optimization, 

constrained optimization, penalty techniques, electrodes, charge 
simulation method. 

I. INTRODUCTION 

In [1], we have outlined the interest of Niching Genetic 
Algorithms for optimization in Electromagnetics. Niching 
methods extend Genetic Algorithms (GAs) by promoting the 
formation of stable subpopulations in the neighborhood of 
local and global optima. In this paper, we present a process 
for automatic design of electrodes using the Charge 
Simulation Method (CSM) [2][3] coupled with niching and 
constrained optimization techniques. Our approach is 
radically different from those developed elsewhere. In effect, 
shape optimal design is generally carried out by directly 
parametrizing the shape of devices [3][4]. The proposed 
method consists in identifying an optimal shape from an 
optimal equipotential line resulting from a system of point 
charges. The study explores the efficiency of many niching 
GAs when applied to the proposed electrode benchmark: in 
this paper, the technological problems will not be discussed. 

II. ELECTRODES DESIGN 

A. Principle 

We consider a 2D-electrode device as displayed in Fig. 1. 
The electrode shape must satisfy a given template (valid area) 
defined by an internal and an external boundary. For reason 
of simplicity (remember that we only want to determine an 
optimal electrode shape), we consider a mathematically 
equivalent problem. Consequently, we use normalized rather 
than physical dimensions for the potential, the field, the 
charges and the lengths. The electric potential results from 
four point charges lying on the y-axis at an ordinate between 
4.5 and 16. Each charge can take any value bounded by qmin 
and qmax . 

The system is considered to be symmetrical in relation to 
the x-axis and y-axis. Therefore, we must take into account 
four identical charges with symmetrical coordinates in 
relation to the x-axis for the computation of the electric 
potential. We can express it at one point of coordinates x and 
y as follows, 

 V x y q ri
i

i( , ) ln �
 
¦1

2 1

8

SH
 (1) 

where qi  denotes the value of the charge i, 

r x x y yi i i � � �( ) ( )2 2  is the distance  between that point 
and the corresponding charge. In the following, we simplify 
the analysis by neglecting the constant factor �1 2/ SH  in the 
computation of the potential and field values.  

Finding an optimal electrode shape consists of 
determining the equipotential of value Vobj , being between the 
internal and external boundaries and with minimum electric 
field on it. 

To fulfill the geometric constraints (electrode surface 
between the internal and external boundaries), the following 
inequations must be satisfied: 

 V V Vobj
ext

max
int

mind d  (2) 

where V ext
min  and Vmax

int  represent the minimum potential value 
on the external boundary and the maximum potential value on 
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Fig. 1. Electrode template 

than those found by the previous methods. We point out that 
without normalization (i.e. when using fixed constraints 
relative to (2)) and death penalty method no feasible solution 
was found in 20000 fitness function evaluations for all GAs. 
In fact, 6 819 500 fitness function evaluations were necessary 
to evaluate 10 feasible solutions with random search. 

C. Penalty methods compared. 

Table III shows statistics obtained for different niching 
GAs with external normalization. Exterior penalty method 
was computed using w1=0.1 (which corresponds to the worst 
value of the objective function in the feasible domain found 
with random search) and w2=100.  

TABLE III 
COMPARISON OF THE PENALTY TECHNIQUES FOR DIFFERENT NICHING GAS 

Optimization 
scheme 

Penalty 
technique 

Exploration   
rate2 

Number of 
optimal profiles 

(Emax<0.06) 

Best     
solution 
(Emax) 

RTS death 8.20% 11.50 0.0561 
RTS exterior 19.26% 33.75 0.0561 
DC death 2.97% 2.50 0.0571 
DC exterior 19.43% 17.50 0.0563 

Clearing (Vs=0.2) death 64.96% 17.00 0.0564 
Clearing (Vs=0.2) exterior 64.46% 14.00 0.0563 

For all GAs, only a few feasible solutions were evaluated 
in the first generations. With death penalty method, crowding 
methods such as Deterministic Crowding or Restricted 
Tournament Selection were unable to improve the major part 
of the population located outside the feasible domain yielding 
a small exploration rate. Clearing rapidly converged and 
stabilized its population in the feasible domain due to the 
selection operator similar to that used in standard GAs. This 
explains the high exploration rate noted for that GA. The 
Exterior penalty method considerably improved the 
exploration rate and the quality of results for crowding 
schemes. It should be also noted that the exploration rate of a 
random search is extremely poor (about 0.8%) whereas that 
of a standard GA with death penalty method is about 93% 
(remind that a standard GA rapidly converges to a single 
region of the feasible domain). We conclude this section by 
presenting in Fig. 3 examples of optimal profiles found and 
associated electric field stress on their contour in Fig. 4. 

IV. CONCLUSION 

This paper describes an original approach for automatic 
design of electrode shapes. The procedure, based on the CSM 
coupled with niching GAs, allows to find multiple optimal 
profiles with reduction of the maximum field stress. The 
paper also investigates normalization schemes and penalty 
methods to improve the efficiency of niching GAs. In the 
future, we will extend our method to three dimensional 
systems with more complex templates and charges with 

additional degrees of freedom. A comparison of  the 
efficiency of our approach will be carried out with other 
traditional shape optimization methods.   
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Fig. 3. Examples of profiles with the corresponding electric field 
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Fig. 4. Electric field stress on the countours. 

2 We define the exploration rate as the ratio of the number of computed 
feasible solutions to the total number of fitness function evaluations. 

Many niching techniques have been used to 
address real-world problems in 
Electromagnetics:
• Restricted Tournament Selection
• Deterministic Crowding
• Sharing
• Clearing
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Table III shows the range of the design variables used in 
this magnetizer problem. An additional constraint LPSRVHV�D�
PLQLPXP� GLVWDQFH� RI� ��� PP� EHWZHHQ� WKH� SRLQW� 3� DQG� WKH�
SRLQW� 2� WR� SUHYHQW� WKH� LQWHUFHSWLRQ� RI� WKH� SROH� ZLWK� WKH�
PDWHULDO�WR�EH�PDJQHWL]HG��
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Design variable Minimum value Maximum value 
[�  -5 mm 25 mm 
[�  25 mm 45.9 mm 
[�  25 mm 26.5 mm 
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VROYHG� XVLQJ� WKH� QLFKLQJ� *$V� SUHVHQWHG� LQ� WKH� SUHYLRXV�
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Table IV shows a comparison of the niching GAs on the 
modified Üler’s benchmark. A simple GA converged to a 
single configuration giving an uniform induction level on the 
chord AB of value 0.208 T. The investigated niching GAs 
were able to maintain more than one solution. Best results 
were obtained with crowding schemes. Sharing performed 
poorly reflecting its difficulty to stabilize its population 
around the optimal solutions. In fact, sharing detected an 
important number of quasi uniform induction levels but these 
solutions were worse than those found by the other GAs and 
below the quality criteria (fobj<0.03). Clearing was obviously 
better by identifying multiple close optimal solutions with a 
small niching radius and a few distinct ones with higher 
niche radii. 
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Optimization process 

Nb of optimal 
solutions 

(fobj<0.03)  

Induction levels 
detected (range) 

Average 
objective 
function 

simple GA  1 0.208 T 0.002 
Clearing (Vs=0.1 k=1) 14 [0.098 T-0.427 T] 0.014 
Clearing (Vs=0.4 k=1) 4 [0.125 T-0.442 T] 0.009 

Sharing (Vs=0.1) 4 [0.103 T-0.150 T] 0.024 
DC 20 [0.117 T-0.563T] 0.011 
RTS 20 [0.122 T-0.596T] 0.008 

Fig. 3 shows examples of uniform induction levels 
detected with a run of RTS compared to that obtained with a 
simple GA and that corresponding to a non-optimized 
configuration. 

9,��&21&/86,216�

Niching methods are robust optimization techniques which 
allow multiple solutions in multimodal domains to be found. 
They can be easily coupled with GAs with only a small 
increase of the computational time resulting from the 

computation of the distances between individuals. 
Nevertheless, this drawback is minor in relation to the 
advantages of these methods. The benefit of the detection of 
distinct optimal solutions is particularly interesting for shape 
optimization problems and inverse problems for which the 
uniqueness of the solution is not fulfilled [11].  
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Camera	Positioning	in	“Virtual”	Worlds
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Medical	Informatics
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Automatic determination of point 
correspondence between images  

Niching techniques (RTS) successfully discovered 
optimal solutions that are measured by the 
similarity between patches of the two images

multimodal GAs-based algorithm for automatic point correspon-
dence. Section 3 presents qualitative and quantitative results of
the algorithm using pairs of dental radiographic images and
retinal fundus images with known geometric transformations, as
well as corresponding computer tomography (CT) transverse
intrapatient slices of anatomic regions that are expected to
present extensive local deformations. Finally, in Section 4, an
assessment for the optimal algorithm’s parameters selection is
presented followed by a discussion on the performance of the
proposed algorithm towards automatic correspondence along
with future research directions.

2. Automatic point correspondence based on the multimodal
GA optimization algorithm

2.1. Problem formulation

Let IR:DR-{0,1,y,255} and IC:DC-{0,1,y,255} be two gray
level images, where DRCZ2 and DCCZ2 are the domains of the
two images. Furthermore, let p¼(x,y)ADR, A(p)¼[x"w,
x+w]# [y"w, y+w] CDR be a square patch on IR centered at p
and Tvp : AðpÞ-R2 be a local similarity transformation acting on
A(p) with parameter vector vp¼(dxp,dyp,yp,sp), where dxp,dyp is
the horizontal and vertical displacement respectively, yp denotes
the angle of in-plane rotation and sp is the scaling factor. If
Bðp,vpÞ ¼ fðu,vÞAR2 : ( qAAðpÞ such that Tvp ðqÞ ¼ ðu,vÞg is the
transformation of A(p) under Tvp (see Fig. 1) and S(IR(A(p)),
Ic(B(p,vp)) is an image similarity measure between the restriction
of IR on A(p), IR(A(p)), and the restriction of IC on B(p,vp),
IC(B(p,vp)), then the problem of establishing point
correspondence between the two images can be formulated as
follows:

Find the points pi¼(xi,yi)ADR and the transformation para-
meters vpi

that optimize the objective function

f ðp,vpÞ & SðIRðAðpÞÞ,IcðBðp,vpÞÞÞ ð1Þ

2.2. The proposed algorithm

This work proposes a multimodal GAs-based algorithm that
automatically determines the point correspondence between two
images by locating multiple optima of the objective function
defined above. The proposed algorithm is initialized by a
randomly generated population of individuals. Each individual i
of the population contains the position parameters (xi,yi) of a
point pi in the image IR as well as a transform parameter vector
vpi

as defined above. The fitness of the individual i,fi, is evaluated
as the square of the cross correlation coefficient between the
restrictions IR(A(pi)) and ICðBðpi,vpi

ÞÞ of the two images, according

to the following formula:

fi ¼

P
x,yAGi

ðIRðx,yÞ"IRÞðICðTvi
ðx,yÞÞ"ICÞ

h i2

P
x,yAGi

ðIRðx,yÞ"IRÞ2
P

x,yAGi
ðICðTvi

ðx,yÞÞ"ICÞ2
ð2Þ

where GiDA(pi) contains the points of A(pi) for which, the
corresponding transformed points under Tvi

, FiDBðpi,vpi
Þ lie

inside the boundaries of the image IC. Since the transformed
points have real valued coordinates, bilinear interpolation is
employed to determine their value in IC. IR and IC are the mean
values of IR and IC calculated over Gi and Fi, respectively.

In order to extract only salient corresponding points, the
initializing points on the IR image, as well as the points produced
during the genetic evolution are constrained to lie on edge pixels.
For this reason, the Canny operator [44] is applied in order to
extract the edge pixels of IR with high and low thresholds TH and
TL, respectively for the non-maximum suppression. Thus, a binary
edge image, BWR, is produced. For each pixel of IR, the nearest
edge pixel is determined by means of the distance transform [45]
applied on BWR and this information is stored in a new image DT
to be used for edge pixel sampling as will be described later.

The GAs-based algorithm is initialized randomly using image
salient points generated by the aforementioned procedure. In
order to identify multiple optima of the objective function
described in (2), the evolution of the multimodal GAs-based
algorithm takes place employing the restricted mating (RM)
technique which modifies the parent selection process and the
following offspring placement operators: the deterministic
crowding (DC) technique and the restricted tournament selection
(RTS) (see Section 2.3 for details). DC and RTS are used in a
mutually exclusive manner and may be combined with RM. If RM
is not applied, then selection takes place according to the roulette
wheel (RW) described in [41].

The proposed multimodal GAs-based algorithm can be de-
scribed in the following pseudocode.

' GAs-based Algorithm Initialization
J Apply the Canny edge detector operator on IR to obtain the

binary edge image BWR

J Apply the distance transform on the BWR image to obtain
DT, such that DT(i,j) carries the position of the nearest edge
pixel of the pixel (i,j) of the IR.

J Initialize a population of N0 individuals.
J Calculate the fitness fi of each individual i.

'
While (stopping criterion is not met) do
J Apply the selection operator of roulette wheel to select

parent p1.
J If RM is active then select parent p2 according to restricted

mating, else select p2 according to the selection operator of
roulette wheel.

p

DR Dc

Tvp

A (p)

B (p)

2w+1

2w
+1

Fig. 1. Schematic representation of the point correspondence problem formulation.
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transformations, the algorithm was applied to Set-III. The
performance of the proposed GAs-based algorithm was quantita-
tively assessed using the following metrics, calculated between IC

and the transformed version of IR, ITR
R :

(a) Normalized mutual information nMI of the overlapping part of
IC and ITR

R as defined in [56]

nMIðIC ,ITR
R Þ ¼ 2

HðICÞþHðITR
R Þ%HðIC ,ITR

R Þ
HðICÞþHðITR

R Þ
ð10Þ

where H(IC) and HðITR
R Þ denote the entropy of IC and ITR

R ,
respectively and HðIC ,ITR

R Þ denotes their joint entropy. The
mutual information has been used successfully as image
similarity measure (e.g. [57]).

(b) The Root Mean Square edge distance (RMSDE) between ITR
R and

IC, was calculated as following: the Canny edge detector
operator was applied on IC and ITR

R to obtain the binary edge
images BWC and BWTR

R , respectively. Subsequently, the
Euclidean distance transform was applied on the BWC image
to obtain the distance map DM of BWC. The RMSDE is

Fig. 4. Comparative results of the proposed GAs-based algorithm (first row) the dual-bootstrap ICP method (second row) and the FFD method (third row) for a typical
image pair of Set-Ia. On the left column, the transformed grid points using (8) are marked by ‘‘o’’, whereas the determined positions of the grid points (using GAs, ICP, or
FFD) are marked by ‘‘+’’. On the right column, the transformed edges of the original image are superimposed on the similarity transformed image.
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calculated according to

RMSDE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
DM2ði,jÞ

r
, ði,jÞ : BWTR

R ði,jÞ40
" #

ð11Þ

where N is the number of non-zero pixels of BWTR
R .

Table 6 presents quantitative results of the performance of the
multimodal GAs-based algorithm, the ICP-TPS algorithm and the
FFD algorithm in terms of (a) normalized mutual information and
(b) RMSDE, between the corresponding image IC and the ITR

R image

for image pairs of Set-III. In order to perform an unbiased
comparison, the FFD algorithm was not evaluated in terms of
normalized mutual information, since the specific algorithm
operates by maximizing this quantity. As can be observed, the
proposed GAs-based algorithm consistently outperforms the ICP-
TPS algorithm, when considering both error metrics. The
performance of the proposed method was marginally better
than the performance of the FFD algorithm, in terms of RMSDE.
The p-value for paired t-test was equal to 0.0442.

Fig. 5. Comparative results of the proposed GAs-based algorithm (first row) the dual-bootstrap ICP method (second row) and the FFD method (third row) for a typical
image pair of Set-IIa. On the left column, the transformed grid points using (8) are marked by ‘‘o’’, whereas the determined positions of the grid points (using GAs, ICP or
FFD) are marked by ‘‘+’’. On the right column, the transformed edges of the original image are superimposed on the similarity transformed image.
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proposed algorithm. As can be seen (Fig. 11a), for values of image
similarity threshold in the range [0.90, 0.95], the optimal RMSDG

error is achieved for values of w in the range between 9 and
13 pixels for the dental image pair of the training set. The optimal
RMSDG error is achieved for w equal to 13 pixels for the retinal
image pair of the training set (Fig. 11b). Since the computational
effort for the execution of the proposed algorithm depends

heavily on the size of the square patch, the value of w was set
to 11 (thus producing a 23!23 square patch) for all subsequent
executions for SET-I pairs, whereas w was set equal to 13 for all
subsequent executions for SET-II pairs, thus producing a 27!27
square patch. From the above results, it is evident that the size of
the square patch (w) depends on the spatial resolution of the
current image pair. For the CT slices image pairs, w was set to 13.

Table 6
Quantitative results of the performance of the multimodal GAs-based algorithm and the ICP algorithm in terms of (a) normalized mutual information and (b) root mean

square distance, RMSDE, between IC and ITR
R for Set-III. The results for the proposed multimodal GAs-based algorithm have been averaged over ten independent algorithm

executions.

SET-III Normalized Mutual Information RMSDE

Multimodal GAs-based Algorithm ICP Algorithm Multimodal GAs-based Algorithm ICP Algorithm FFD Method

Pair-1 0.394 0.381 1.60 2.43 1.51
Pair-2 0.397 0.381 1.13 2.00 1.18
Pair-3 0.414 0.372 1.73 2.63 1.73
Pair-4 0.370 0.369 1.27 1.90 1.33
Pair-5 0.393 0.380 0.44 2.58 0.57
Pair-6 0.378 0.366 0.57 1.48 0.69
Pair-7 0.396 0.347 0.79 1.68 0.84
Pair-8 0.437 0.407 0.82 1.54 0.91
Pair-9 0.370 0.359 1.11 2.24 1.10
Pair-10 0.382 0.364 0.43 1.09 0.53
Mean7Std.dev. 0.393 70.021 0.37270.016 0.9970.459 1.97570.514 1.03970.403

Fig. 9. Application of the proposed GAs-based algorithm to pairs of corresponding transverse CT slices, obtained at different time from the same patient, imaging the lung
(first row) and the pelvis region (second row). On the left column, pairs of corresponding points are shown superimposed on IC (‘o’ denotes a point from IR and ‘+’ denotes a
point from IC). Only point pairs with squared correlation coefficient greater than a threshold of 0.95 are shown. On the right column, the transformed edges from IR are
superimposed on IC.
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proposed algorithm. As can be seen (Fig. 11a), for values of image
similarity threshold in the range [0.90, 0.95], the optimal RMSDG

error is achieved for values of w in the range between 9 and
13 pixels for the dental image pair of the training set. The optimal
RMSDG error is achieved for w equal to 13 pixels for the retinal
image pair of the training set (Fig. 11b). Since the computational
effort for the execution of the proposed algorithm depends

heavily on the size of the square patch, the value of w was set
to 11 (thus producing a 23!23 square patch) for all subsequent
executions for SET-I pairs, whereas w was set equal to 13 for all
subsequent executions for SET-II pairs, thus producing a 27!27
square patch. From the above results, it is evident that the size of
the square patch (w) depends on the spatial resolution of the
current image pair. For the CT slices image pairs, w was set to 13.
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Quantitative results of the performance of the multimodal GAs-based algorithm and the ICP algorithm in terms of (a) normalized mutual information and (b) root mean

square distance, RMSDE, between IC and ITR
R for Set-III. The results for the proposed multimodal GAs-based algorithm have been averaged over ten independent algorithm

executions.
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Pair-4 0.370 0.369 1.27 1.90 1.33
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Mean7Std.dev. 0.393 70.021 0.37270.016 0.9970.459 1.97570.514 1.03970.403

Fig. 9. Application of the proposed GAs-based algorithm to pairs of corresponding transverse CT slices, obtained at different time from the same patient, imaging the lung
(first row) and the pelvis region (second row). On the left column, pairs of corresponding points are shown superimposed on IC (‘o’ denotes a point from IR and ‘+’ denotes a
point from IC). Only point pairs with squared correlation coefficient greater than a threshold of 0.95 are shown. On the right column, the transformed edges from IR are
superimposed on IC.
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Scheduling	Problems

• Project	Management

– Optimize	productivity

• Makespan,	Due	dates

– Maximize	revenue

– Minimize	delays

• Job	shop	Scheduling
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• Pérez, E., Posada, M. & Lorenzana, A. Taking advantage of solving the resource 
constrained multi-project scheduling problems using multi-modal genetic algorithms, Soft 
Comput (2016) 20: 1879. doi:10.1007/s00500-015-1610-z

• E. Prez, F. Herrera, and C. Hernndez, “Finding multiple solutions in job shop scheduling 
by niching genetic algorithms,” Journal of Intelligent Manufacturing, vol. 14, no. 3-4, pp. 
323–339, 2003.

• E. Prez, M. Posada, and F. Herrera, “Analysis of new niching genetic algorithms for 
finding multiple solutions in the job shop scheduling,” Journal of Intelligent Manufacturing, 
vol. 23, no. 3, pp. 341–356, 2012. Pictures from: http://www.ymc.ch/en/lego-resource-scheduling-wall



Artificial	examples
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X. Li, A. Engelbrecht, and M. Epitropakis, “Benchmark functions for cec’2013 special session and competition on niching 
methods for multimodal function optimization,” Technical Report, Evolutionary Computation and Machine Learning Group, RMIT 
University, 2013.



RESEARCH	QUESTIONS
Multi-Modal	Optimization
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Main	Research	Questions

• In	which	situations	are	MMO	methods	actually	
better	than	“usual”	EC	optimization	algorithms?
– Problems	(problem	classes)

– Performance	measures	

– Properties,	e.g.	time/space	complexity

• What	are	the	advantages/characteristics	of	
different	MMO	methods,	which	one	shall	we	
choose?

• What	are	the	limits for	further	improvement?		

• How	can	we	rigorously define	the	field	
(Theoretical	justifications/analyses)?
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CLASSIC	NICHING	METHODS
Multi-Modal	Optimization
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Fitness	sharing
• A	sharing	function	can	
be	used	to	degrade	an	
individual’s	fitness	based	
on	the	presence	of	other	
neighbouring	individuals

• During	selection,	many	
individuals	in	the	same	
neighbourhood	would	
degrade	each	other’s	
fitness
– Limiting	the	number	of	
individuals	occupying	
the	same	niche	
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x

f(x)

An example to illustrate fitness sharing. 

D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal function optimization,” in Proc. of the Second International 
Conference on Genetic Algorithms, J. Grefenstette, Ed., 1987, pp. 41–49.



Crowding	methods
• Originally	by	De	Jong	(1975),	and	later	modified	by	
Mahfoud	(1995)

• Crowding usually	consists	of	two	phases:
– Pairing	phase:	pairing	each	offspring	with	a	similar	individual	
in	the	current	population

– Replacement	phase:	which	of	the	two	will	remain	in	the	
population?

• Deterministic	Crowding	selects	the	fittest	individual	in	
each	pair	in	the	replacement	phase

• Probabilistic	Crowding	selects	the	surviving	individual	
for	each	pair	based	on	a	probabilistic	formula	that	takes	
fitness	into	account
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S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, Department of General Engineering, 
University of Illinois at Urbana-Champaign, Urbana, IL, 1995.
K. A. de Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Department of 
Computer and Communication Sciences, University of Michigan, Ann Arbor, MI, 1975.



Deterministic	crowding
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Each offspring tends to 
compete for survival with 
its most similar parent.

p1 p2

c1 c2



Clearing
• Proposed	by	Petrowski (1996);	inspired	by	the	principle	of	sharing	

of	limited	resources	within	each	subpopulation	(or	species).	
• The	clearing procedure	only	supplies	the	resources	to	the	best	

individuals	in	each	subpopulation
• All	individuals	fall	within	r distance	from	the	best	k individuals	

(below	shows	k =	2)	from	the	population	are	cleared.	This	process	
is	repeated	until	the	whole	population	is	considered.

2/6/17 35

r

A. Petrowski. A clearing procedure as a niching method for genetic algorithms. In Proceedings of Third IEEE International Conference on 
Evolutionary Computation(ICEC’96), pages 798–803. Piscataway, NJ:IEEE Press, 1996.



Restricted	Tournament	Selection

• Proposed	by	Harik	(1997)

• A	modification	of	standard	tournament	selection,	
based	on	local	competition

• Two	individuals	x and	y are	picked,	and	crossover	and	
mutation is	performed	in	the	standard	way,	creating	
new	individuals	x’ and	y’

• Then	w (i.e.,	window	size)	individuals	are	randomly	
chosen	from	the	population,	and	among	these	the	
closest	one	to	x’,	namely	x’’,	competes	with	x’ for	a	spot	
in	the	new	population
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G. Harick. Finding multi-modal solutions using restricted tournament selection. In Proceedings of the Sixth 
International Conference on Genetic Algorithms(ICGA-95), pages 24–31, 1997.



Other	methods

• Clustering based	
methods	(Yin	and	
Germay	1991)	

• Species	conserving	GA	
(SCGA)	by	Li	et	al.	(2002)	

• Modified	clearing	by	
Singh	and	Deb	(2006)

• Also	sequential	niching	
methods,	and	so	on
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G. Singh and K. Deb, “Comparisons of multi-modal optimization algorithms based on evolutionary algorithms,” in Proc. of 
the Genetic and Evolutionary Computation Conference 2006 (GECCO’06), Washington, USA, 2006, pp. 1305 – 1312.



NICHING	WITH	PSO	AND	DE
Multi-Modal	Optimization
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PSO	niching	methods

• In	Particle	Swarm	Optimization	(PSO),	each	particle	has	
its	own	memory	remembering	its	best	known	position	
so	far,	and	share this	information	with	other	particles

• At	each	iteration,	each	particle	is	propelled	towards	
the	area	defined	by	the	stochastic	average	of	its	own	
known	best	position	and	the	swarm	best	position

• The	notion	of	memory	associated	with	each	particle	is	
unique	to	PSO,	and	this	property	can	be	used	to	induce	
niching	behaviour

• A	swarm	can	be	divided	into	two	parts:
– an	explorer-swarm consisting	of	the	current	particles

– a	memory-swarm,	comprising	of	only	best	known	
positions	of	individual	particles
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X. Li, “Developing niching algorithms in particle swarm optimization,” in Handbook of Swarm Intelligence, ser. Adaptation, 
Learning, and Optimization, B. Panigrahi, Y. Shi, and M.-H. Lim, Eds. Springer Berlin Heidelberg, 2011, vol. 8, pp. 67–88.
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Speciation-based	PSO

f

x

s2
s1

s3

2rs

p

An example of how to determine the species seeds from the population at each 
iteration. s1, s2, and s3 are chosen as the species seeds. Note that p follows s2

D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using speciation,” 
IEEE Trans. on Evol. Comput., vol. 10, no. 4, pp. 440–458, August 2006.
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Speciation-based	PSO

Step 1: Generate an initial population with randomly generated particles;
Step 2: Evaluate all particle individuals in the population;
Step 3: Sort all particles in descending order of their fitness values (i.e., from 
the best-fit to least-fit ones);
Step 4: Determine the species seeds for the current population;
Step 5: Assign each species seed identified as the gBest to all individuals 
identified in the same species;
Step 6: Adjusting particle positions according to the PSO velocity and 
position update equation (1) and (2);
Step 7: Go back to step 2), unless termination condition is met.



Ring	topology	based	niching	PSO
• Given	a	reasonably	large	population	uniformly	distributed	in	the	

search	space,	the	ring	topology	based	niching	PSOs	are	able	to	
form	stable	niches	across	different	local	neighbourhoods,	
eventually	locating	multiple	global/local	optima

• This	method	can	operate	as	a	niching	algorithm	by	using	
individual	particles’	local	memories	to	form	a	stable	network	
retaining	the	best	positions	found	so	far

2/6/17 42

X. Li, “Niching without niching parameters: Particle swarm optimization using a ring topology,” IEEE Trans. on Evol. Comput., 
vol. 14, no. 1, pp. 150 – 169, February 2010.



Ring	topology	based	niching	PSO

• Results	on	Shubert	2D	function	(two	snapshots	
during	a	simulation	run)
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X. Li, “Niching without niching parameters: Particle swarm optimization using a ring topology,” IEEE Trans. on Evol. Comput., 
vol. 14, no. 1, pp. 150 – 169, February 2010.



Stretching	and	Deflation	in	PSO

• Aims	to	compute	all	global	minimizers,	while	avoiding	
local	minimizers,	through	PSO

• Iteratively	modifies	the	objective	function	by	
deflection and	stretching
– Knowledge	of	previously	detected	optima	are	incorporated	
in	the	new	form

– “Mexican	hat”	effect:	introduction	of	new	local	optima

– Overcome	such	issues	by	using	repulsion technique

– Addition	of	new	control	parameters
– Applications	in	non-linear	dynamic	systems	(periodic	
orbits)	&	game	theory	(Nash	equilibria)
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K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis, “Objective function ”stretching” to alleviate convergence to local minima,” 
Nonlinear Analysis, vol. 47, no. 5, pp. 3419–3424, 2001.
K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global minimizers through particle swarm optimization,” IEEE Trans. on Evol. Compu., vol. 
8, no. 3, pp. 211–224, June 2004.



Stretching	and	Deflation	in	PSO	(II)
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PARSOPOULOS AND VRAHATIS: ON THE COMPUTATION OF ALL GLOBAL MINIMIZERS THROUGH PSO 215

Fig. 5. Deflection transformation of the function defined in (9), at the point
, for .

Fig. 6. Deflection transformation of the function defined in (12), at the point
, for .

B. Stretching Technique

A different recently proposed technique, developed to ad-
dress the problem of local minima, is the stretching technique
[26], [64], [67], [68]. This technique consists of a two-phase
transformation of the objective function. The first phase of the
transformation, stretches the objective function upwards, elim-
inating all minima with values higher than the value of the ob-
tained minimizer. In the second stage of the transformation, the
detected minimum is turned to a maximum. All minima with
lower values of the objective function remain unaltered by the
transformation.

Let be an obtained minimizer of the objective function .
Then, stretching is defined as [26], [64], [67], [68]

(13)

(14)

Fig. 7. Deflection transformation of the function defined in (12), at the point
, for .

Fig. 8. Deflection transformation of the function defined in (12), at the point
, for .

where , , and are arbitrary parameters. The func-
tion is the well known three-valued sign function, defined as

The effect of the stretching transformation on the func-
tion defined in (9) is illustrated in Fig. 9, for ,

, and 10 . The parameter controls the
upward stretching of the objective function, performed by

, in (13). Due to this transformation, the local minima
with function values higher than the one found are eliminated.
The effect of increasing the value of in the aforementioned
example, is exhibited in Fig. 10, for . In practice,
high values of [e.g., 10 ] are used in multidimensional
problems to ensure that the local minima with function values
higher than the detected one, will be eliminated.
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Fig. 9. Stretching transformations (dashed line) and (dash-dotted
line) of the function defined in (9), at the point , for

, , and .

Fig. 10. Stretching transformations (dashed line) and
(dash-dotted line) of the function defined in (9), at the point ,
for , , and 10 .

The parameters and determine the range of the effect and
the magnitude of the elevation, respectively. The effect of setting

to a larger value, , is exhibited in Fig. 11. It is
evident that a larger area around the local minimizer is affected
by increasing this parameter. The effect of decreasing to 10
is illustrated in Fig. 12. Even slightly decreasing the parameter

, the former local minimizer (and now local maximizer) takes
extreme function values. Usually, 10 , ,
and 10 is a satisfactory setup, unless information for
the objective function implying a different parameter setup is
available.

The stretching transformation modifies neither local minima
with function values lower than the obtained one nor global
minima. It does, however, alleviate all minima with higher or
equal function values. Thus, it is proper for local minima, but if
it is applied on a global minimizer, then all other global mini-

Fig. 11. Stretching transformations (dashed line) and
(dash-dotted line) of the function defined in (9), at the point ,
for , , and 10 .

Fig. 12. Stretching transformations (dashed line) and
(dash-dotted line) of the function defined in (9), at the point ,
for , , and 10 .

mizers are alleviated. This effect is displayed in Fig. 13, where
the stretching transformation is applied on the global minimizer

of the function defined in (12). It is clear that all
other global minimizers of the objective function are alleviated.

A very interesting point to note is that the “mexican hat” ef-
fect which appears in the deflection technique, is also present
in this setting. Proper fine-tuning of the stretching parameters
tends to alleviate this problem, but for a given function, infor-
mation concerning optimal parameter values or the appropriate
parameter configuration to avoid this problem, is not generally
available. If preprocessing for the determination of the proper
parameters is not feasible or desirable, then a “repulsion” tech-
nique can be used to prevent the swarm from converging to one
of the local minima artificially created due to the “mexican hat.”
A discussion of the “repulsion” technique is given in the next
section.
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Fig. 13. Stretching transformations (dashed line) and
(dash-dotted line) of the function defined in (12), at the point , for

, , and .

Fig. 14. Original plot of the Levy no. 5 function in the range .

An application of the stretching transformation on a two-
dimensional (2-D) function, namely the Levy no. 5 function,
which is defined by

(15)

is illustrated in Figs. 14–16. Fig. 14 illustrates the original plot
of the function. Fig. 15 illustrates the effect of stretching after
the application of the first transformation , which is defined
in (13), on a local minimizer at the upper part of the figure. All
minima with lower function values are left unaffected. Finally,
the second transformation , defined in (14), is illustrated
in Fig. 16, where the stretched minimizer is transformed to a
maximizer. The minima with lower function values have been
left unaffected.

Fig. 15. First stage of the stretching transformation (13) for the Levy
no. 5 function.

Fig. 16. Levy no. 5 function after the stretching transformation (14).

In conclusion, the stretching technique can be used in cases
where only the global minimizer is required since it alleviates
the local ones.

C. Repulsion Technique

As previously mentioned, in numerous cases the transforma-
tions applied to eliminate minimizers of the original objective
function introduce new local minima in “mexican hat”-shaped
areas of the resulting function. Thus, even after the application
of the transformations, it is not certain that the swarm will not
converge to a neighborhood of one of the already detected min-
imizers, since particles are solely guided by the function values
of the positions they assume in the search space.

The repulsion technique can be used to alleviate this problem.
The underlying idea is intuitively appealing and its implementa-
tion is straightforward: after the detection of a minimizer, in ad-
dition to the application of deflection or stretching, as described

PARSOPOULOS AND VRAHATIS: ON THE COMPUTATION OF ALL GLOBAL MINIMIZERS THROUGH PSO 217

Fig. 13. Stretching transformations (dashed line) and
(dash-dotted line) of the function defined in (12), at the point , for

, , and .

Fig. 14. Original plot of the Levy no. 5 function in the range .

An application of the stretching transformation on a two-
dimensional (2-D) function, namely the Levy no. 5 function,
which is defined by

(15)

is illustrated in Figs. 14–16. Fig. 14 illustrates the original plot
of the function. Fig. 15 illustrates the effect of stretching after
the application of the first transformation , which is defined
in (13), on a local minimizer at the upper part of the figure. All
minima with lower function values are left unaffected. Finally,
the second transformation , defined in (14), is illustrated
in Fig. 16, where the stretched minimizer is transformed to a
maximizer. The minima with lower function values have been
left unaffected.

Fig. 15. First stage of the stretching transformation (13) for the Levy
no. 5 function.

Fig. 16. Levy no. 5 function after the stretching transformation (14).

In conclusion, the stretching technique can be used in cases
where only the global minimizer is required since it alleviates
the local ones.

C. Repulsion Technique

As previously mentioned, in numerous cases the transforma-
tions applied to eliminate minimizers of the original objective
function introduce new local minima in “mexican hat”-shaped
areas of the resulting function. Thus, even after the application
of the transformations, it is not certain that the swarm will not
converge to a neighborhood of one of the already detected min-
imizers, since particles are solely guided by the function values
of the positions they assume in the search space.

The repulsion technique can be used to alleviate this problem.
The underlying idea is intuitively appealing and its implementa-
tion is straightforward: after the detection of a minimizer, in ad-
dition to the application of deflection or stretching, as described

PARSOPOULOS AND VRAHATIS: ON THE COMPUTATION OF ALL GLOBAL MINIMIZERS THROUGH PSO 217

Fig. 13. Stretching transformations (dashed line) and
(dash-dotted line) of the function defined in (12), at the point , for

, , and .

Fig. 14. Original plot of the Levy no. 5 function in the range .

An application of the stretching transformation on a two-
dimensional (2-D) function, namely the Levy no. 5 function,
which is defined by

(15)

is illustrated in Figs. 14–16. Fig. 14 illustrates the original plot
of the function. Fig. 15 illustrates the effect of stretching after
the application of the first transformation , which is defined
in (13), on a local minimizer at the upper part of the figure. All
minima with lower function values are left unaffected. Finally,
the second transformation , defined in (14), is illustrated
in Fig. 16, where the stretched minimizer is transformed to a
maximizer. The minima with lower function values have been
left unaffected.

Fig. 15. First stage of the stretching transformation (13) for the Levy
no. 5 function.

Fig. 16. Levy no. 5 function after the stretching transformation (14).

In conclusion, the stretching technique can be used in cases
where only the global minimizer is required since it alleviates
the local ones.

C. Repulsion Technique

As previously mentioned, in numerous cases the transforma-
tions applied to eliminate minimizers of the original objective
function introduce new local minima in “mexican hat”-shaped
areas of the resulting function. Thus, even after the application
of the transformations, it is not certain that the swarm will not
converge to a neighborhood of one of the already detected min-
imizers, since particles are solely guided by the function values
of the positions they assume in the search space.

The repulsion technique can be used to alleviate this problem.
The underlying idea is intuitively appealing and its implementa-
tion is straightforward: after the detection of a minimizer, in ad-
dition to the application of deflection or stretching, as described



Other	recent	niching	PSO	variants
• LIPS:	Euclidean-distance-based	niching	PSO	forms	niches	by	using	the	nearest	neighbors	to	each	personal	

best	in	the	Fully	Informed	PSO	(FIPS)	

– B.	Y.	Qu,	P.	N.	Suganthan,	and	S.	Das,	“A	distance-based	locally	informed	particle	swarm	model	for	multimodal	optimization,”	

IEEE	Transactions	on	Evolutionary	Computation,	vol.	17,	no.	3,	pp.	387– 402,	June	2013.	

• NichePSO,	nbest	PSO,	and	Multi-swarms
– A.	P.	Engelbrecht.	R.	Brits	and	F.	van	den	Bergh,	“A	niching	particle	swarm	optimizer,”	SEAL	2002,	pp.	692–696.	

– R.	Brits,	A.	P.	Engelbrecht,	and	F.	van	den	Bergh,	“Solving	systems	of	unconstrained	equations	using	particle	swarm	optimizers,”	

Proc.	of	the	IEEE	Conf.	on	Systems,	Man,	Cybernetics,	pp.	102–107,	2002.	

– T.	Blackwell	and	J.	Branke,	“Multi-swarms,	exclusion,	and	anti- convergence	in	dynamic	environments,”	Evolutionary	

Computation,	IEEE	Transactions	on,	vol.	10,	no.	4,	pp.	459–472,	2006.	

• Adaptive	Niching	PSO	(ANPSO)	adaptively	determines	the	niche	radius	by	calculating	population	statistics	

at	each	iteration

– S.	Bird	and	X.	Li,	“Adaptively	choosing	niching	parameters	in	a	PSO,”	in	GECCO	2006,	2006,	pp.	3–10.	

• Vector-based	PSO	(VPSO)	treats	each	particle	as	a	vector	and	niche	identification	is	done	by	carrying	out	
vector	operations	of	the	particles.	A	niche	is	determined	by	the	radius	value	based	on	the	distance	

between	the	swarm	best	and	the	nearest	particle	with	a	negative	dot	product	(i.e.,	moving	in	an	opposite	

direction)

– I.	L.	Schoeman	and	A.	P.	Engelbrecht,	“Using	vector	operations	to	identify	niches	for	particle	swarm	optimization,”	in	Proc.	of	the	

2004	IEEE	Conf.	on	Cybernetics	and	Intelligent	Systems,	2004,	pp.	361	– 366.	

• Recent	Developments	in	PSO, please	refer	to:
– J.	Barrera	and	C.	A.	C.	Coello,	“A	review	of	particle	swarm	optimization	methods	used	for	multimodal	optimization,”	in	

Innovations	in	Swarm	Intelligence,	ser.	Studies	in	Computational	Intelligence,	C.	Lim,	L.	Jain,	and	S.	Dehuri,	Eds.	Springer	Berlin	

Heidelberg,	2009,	vol.	248,	pp.	9–37.	

– X.Li,“Developing	niching	algorithms	in	particle	swarm	optimization,”	in	Handbook	of	Swarm	Intelligence,	ser.	Adaptation,	

Learning,	and	Optimization,	B.	Panigrahi,	Y.	Shi,	and	M.-H.	Lim,	Eds.	Springer	Berlin	Heidelberg,	2011,	vol.	8,	pp.	67–88.	
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Niching	in	Differential	Evolution

• Differential	Evolution	(Storn	&	Price	1995)

• DE	belongs	in	the	class	of	EAs

• Population-based,	few	control	parameters

• Basic	Operations:

– Mutation,	Crossover,	Selection

• DE	in	MMO:	

– niching	technics,	

– specialized	search	operators	(mostly	mutation	str.)
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Mining	Differential	Evolution’s	dynamics
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The impact of the dynamics of DE mutation strategies

Observation:
DE mutation strategies tend to distribute the individuals of the
population in the vicinity of the minima of the objective function.

Exploitative strategies: rapidly gather all the individuals to
the basin of attraction of a single minimum,
Explorative strategies: tend to spread the individuals
around many minima.

A case study: Shekel’s Foxholes function

Twenty four separable local
minima and
One global minimum @
f (�32,32) = 0.998004

Michael G. Epitropakis, Xiaodong Li, and Edmund K. Burke Niching Differential Evolution with Dynamic Archive 29
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Case study: Shekel’s Foxholes
• Twenty four separable local minima
• One global minimum 

• @ f(-32,32) = 0.998004
M.G. Epitropakis, D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, and M.N. Vrahatis,

“Enhancing differential evolution utilizing proximity- based mutation operators,”, IEEE 

Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 99-119, 2011.



DE	dynamics
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DE/best/1 population DE/rand/1 population

DE/best/1 and DE/rand/1 population’s positions after 1 generation



DE	dynamics
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DE/best/1 population DE/rand/1 population

DE/best/1 and DE/rand/1 population’s positions after 5 generation



DE	dynamics
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DE/best/1 population DE/rand/1 population

DE/best/1 and DE/rand/1 population’s positions after 10 generation



DE	dynamics
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DE/best/1 population DE/rand/1 population

DE/best/1 and DE/rand/1 population’s positions after 20 generation



DE’s	cluster	tendency

• Cluster	Tendency	(H-measure,	Hopkins	test)

– Determines	the	presence	or	absence	of	a	

clustering	structure	in	a	data	set
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B.	Hopkins	and	J.	G.	Skellam,	“A	new	method	for	determining	the	type	of	distribution	of	plant	individuals,”	Ann.	Botany,	vol.	18,	no.	2,	pp.	213–227,	1954.

M.G.Epitropakis,	D.K.Tasoulis,	N.G.Pavlidis,	V.P.Plagianakos,	and	M.	N.	Vrahatis,	“Enhancing	differential	evolution	utilizing	proximity- based	mutation	

operators,”	Evolutionary	Computation,	IEEE	Transactions	on,	vol.	15,	no.	1,	pp.	99–119,	Feb	2011.	



Niching	DE:	DE/nrand	family	
• Inspired	by	this	observation,	classic	DE	mutation	operators		

were	altered	to	incorporate	spatial	information	about	the	
nearest	neighbour	concept

• Induce	the	niching	effect,	without	using	any	additional
parameter

• Instead	of	using	the	base	vector	the	usual	way,	its	nearest	
neighbour	is	always	chosen	as	the	actual	base	vector
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M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, , “Finding multiple global optima exploiting differential evolution’s 
niching capability,” in Differential Evolution (SDE), 2011 IEEE Symposium on, April 2011, pp. 1–8. 

The Proposed Approach The Proposed Approach

DE/nrand: the baseline niching algorithm

Exploit the spatial characteristics of DE’s population structure

It takes advantage from the dynamics of the classic
DE/rand/1 and DE/rand/2 (tend to spread the individuals
around many optima)
It incorporates spatial information about the neighborhood
of each potential solution
Induce a niching formation, without incorporating any
additional parameter.

The DE/nrand mutation strategies family [Epitropakis et al.
2011]:
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DE/nrand	family	behavior
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DE/NRAND/1	DEMO

Multi-Modal	Optimization:	

https://mikeagn.github.io/DeMatDEnrand/
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Niching	DE:	dADE/nrand	family

• Similar	search	as	DE/nrand	family

• Self-adaptive	control	parameters	(JADE	self-
adaptation)

• Utilize	dynamic	archive:
– put	only	better	solutions	in

– if	near	better	contained,	re-initialize	individual

– identification	radius	R	adapted	during	run

• Substantially	improved	performance	
• Less	sensitive	to	the	population	size
• Top	participant	in	CEC	2013/2015	competitions
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M. G. Epitropakis, X. Li, and E. K. Burke, “A dynamic archive niching differential evolution algorithm for multimodal optimization,” in 
Evolutionary Computation (CEC), 2013 IEEE Congress on, June 2013, pp. 79–86.



Niching	DE:	dADE/nrand	family
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Niching	DE:	Other	recent	variants
• DE	with	restricted	neighborhood	mutations	(speciation,	crowding,	sharing):	each	

individual	is	mutated	by	randomly	selecting	individuals	within	the	m-th	

neighborhood	niche	of	its	base	vector
– B.	Y.	Qu,	P.	N.	Suganthan,	and	J.	J.	Liang,	“Differential	evolution	with	neighborhood	mutation	for	multimodal	

optimization,”	Evolutionary	Computation,	IEEE	Transactions	on,	vol.	16,	no.	5,	pp.	601–614,	Oct	2012.	

• DE	with	probabilistic	parent	selection	scheme	based	on	fitness	and	proximity	
information

– S.	Biswas,	S.	Kundu,	and	S.	Das,	“Inducing	niching	behavior	in	differential	evolution	through	local	information	sharing,”	

Evolutionary	Computation,	IEEE	Transactions	on,	vol.	19,	no.	2,	pp.	246–263,	April	2015.	

• DE	with	parent	centric	mutation	strategies	combined	with	crowding	
– S.	Biswas,	S.	Kundu,	and	S.	Das,	“An	improved	parent-centric	mutation	with	normalized	neighborhoods	for	inducing	

niching	behavior	in	differential	evolution,”	IEEE	Transactions	on	Cybernetics,	vol.	44,	no.	10,	pp.	1726–1737,	Oct	2014.	

• Ensemble	of	niching	techniques
– S.	Hui	and	P.	N.	Suganthan,	“Ensemble	and	arithmetic	recombination- based	speciation	differential	evolution	for	

multimodal	optimization,”	IEEE	Transactions	on	Cybernetics,	vol.	46,	no.	1,	pp.	64–74,	Jan	2016	

• DE	with	index-based	neighborhoods	to	induce	the	niching	effect
– M.	G.	Epitropakis,	V.	P.	Plagianakos,	and	M.	N.	Vrahatis,	“Multi- modal	optimization	using	niching	differential	evolution	

with	index- based	neighborhoods,”	in	Proceedings	of	2012	IEEE	Congress	on	Evolutionary	Computation	(CEC’12),	June	

2012,	pp.	1–8.	
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SOME	OTHER	STATE-OF-THE-ART	
NICHING	METHODS

Multi-Modal	Optimization
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Nearest-better	Clustering	(I)

• The	basic	idea:	Connect	every	solution	to	the	nearest	
one	that	is	better	(in	terms	of	fitness),	clustering	is	done	
via	cutting	the	longest	lines	

• Assumption:	Longest	edges	are	connections	between	
optima
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M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual conference 
companion on Genetic and evolutionary computation (GECCO ’10). ACM, New York, NY, USA, pp. 1711-1718, 2010



Nearest-better	Clustering	(II)
• NBC	works	with	clustered	(left)	and	randomized	
(right)	samples

• It	incorporates	(&needs)	heuristic	rule	to	remove	
“the	right”	longest	edges
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M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual conference 
companion on Genetic and evolutionary computation (GECCO ’10). ACM, New York, NY, USA, pp. 1711-1718, 2010



NEA2:	Niching	Evolutionary	Algorithm	2

• NEA2:	clustering +	local	optimization	
• NBC combined	with	CMA-ES	produces	a	niching	
algorithm	that	won the	top	place	in	the	CEC’2013	
niching	competition

• However,	it	still	needs	to	set	a	few	niching	parameters
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M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual conference 
companion on Genetic and evolutionary computation (GECCO ’10). ACM, New York, NY, USA, pp. 1711-1718, 2010



Niching	Migratory	Multi-swarm	

Optimiser	(NMMSO)
• Built	on	an	analysis	of	top	ranked	algorithms	in	CEC’2013	niching	

competition	to	exploit	similar	characteristics	 of	the	winners
ü self-adaption	of	search	parameters

ü dynamic	mode	maintenance
ü exploitative	local	search

• The	basic	idea:	
– uses	concurrent	swarms	each	having	strong	local	search
– each	swarm	fine-tunes	its	local	mode	estimates

– swarms which	have	improved	their	mode/niche	estimate	are	paired	
with	their	closest	adjacent	swarm	for	potential	merging	(preventing	
duplication	of	labour)

– New	regions	in	which	to	search	for	modes	are	identified	by	splitting
away	particles	from	existing (large)	swarms

2/6/17 64
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NMMSO	#swarms	maintained
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Fig. 2. Number of swarms maintained by each run on each problem, recorded at each iteration until all global optima have converged to within 10�5, or
the function evaluations allowed are exhausted. Swarms recorded at line 11 of Figure 1. Mean of runs plotted in red (when a run has terminated, the size of
its final population is used in the calculation of the mean swarm size until all runs complete).

will tend to result in a mid-point that is higher than the lower
swarm gbest – causing the paired swarms to be merged.

VI. DISCUSSION

We have introduced a new multi-modal optimiser which
utilises a number of self-contained but communicating sub-
swarms to search for modes in the fitness landscape. The
approach builds on a number of properties which have been
identified in effective multi-modal optimisers, and continu-
ously hones mode estimates by exploiting individual swarms
in parallel, rather than searching in local regions and moving
on like other multi-swarm approaches to multi-modal optimi-
sation. Particles may additionally split off to form new swarms,
or migrate between swarms by splitting and subsequently
merging. Results on the CEC 2013 niching test problems
show that the proposed algorithm is extremely competitive
with the current state-of-the-art, and gives robust performance,
even though seeded by a single random solution in X .
Nevertheless, the number of parameters is still larger than
would be generally desirable: future work will be focused
on reducing these (via self-adaptation) as well as applying
NMMSO to multi-modal engineering design problems. Note
however that the optimiser does not require a niching radius
or number of niches to be set – as it dynamically fits both
of these locally, based upon the distance between the current
peak estimate locations being maintained. MATLAB code for

the NMMSO, MEA and MSSPSO algorithms is available at
https://github.com/fieldsend.
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RS-CMSA-ES:	Covariance	Matrix	Self	

Adaption	ES	with	Repelling	Subpopulations

• RS-CMSA	adapts and	reformulatesmultiple	existing	
concepts	from	different	methods	

• RS-CMSA	can	learn	the	relative	size	and	possibly	the	
shape	of	the	basins,	and	properly	handle	the	challenge	
of	non-circular	basins

• No	assumption	on	the	distribution	of	global	minima,	
the	shape or	the	size	of	the	basins	is	required.	

• No	niche	radius	parameters	and	for	all	other	
parameters,	the	default	values	are	shown	to	be	robust	
(given	a	rough	estimate	for	the	expected	number	of	
minima)	
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RS-CMSA-ES:	Main	Components	(I)

• Sub-populations to	capture	different	niches
• Archive	with	adaptive	Taboo	regions
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• Effect of the criticality measure (Equation 11) on reduction of the number of the
critical taboo points.

• Possible advantages of the Mahalanobis distance metric, in comparison with the
Euclidean distance metric.

3.1 First descriptive experiment

In the first descriptive experiment, RS-CMSA is tested on the 2D Vincent function. It
has 36 minima, all global, which significantly vary in size and relative distance (Figure
4a). Restarts are performed, but for this experiment, the population size is kept un-
changed (�= 10, N

0

s

= 50). Initialized subpopulations are depicted with black circles,
where the center and radius of each circle represent x

meani and ˆ

d

0

�

meani , respectively.
The gray circles correspond to the archived points and their taboo regions ( ˆdm�

mean

),
respectively. At this point of each restart, Ci=9.75

2I and �

meani =�

mean

; therefore, all of
the taboo regions are spherical and the difference in size of the taboo regions originates
merely from the difference in the normalized taboo distances ( ˆdm). It is remarkable that
illustration of these regions is much harder for an arbitrary point during the restart,
since the shape, the size, and the number of taboo regions would be different for each
subpopulation.

Figure 4b depicts the generated subpopulations immediately after the initializa-
tion part in the zeroth restart. There is no archived point at this moment, and the
centers of the subpopulations are at least 3 ˆd

0

ū�

mean

far from each other, in which ū is
the geometric average of the square root of the initial covariance matrix eigenvalues.
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Figure 4: Taboo regions around the archived points (gray circles) and the centers of the
subpopulations (black circles) at different restarts, immediately after initialization.

20 Evolutionary Computation Volume x, Number x

• Taboo	regions	are	adaptively	
re-sized	and	reshaped,	differ	
for	different	subpopulations.	

• The	size	of	the	taboo	region	is	
adapted	to	the	basin	size.

• Taboo	regions	are	the	
previously	identified	basins	
and	the	center	of	fitter	
subpopulations.	

• Only	critical	taboo	regions	are	
checked.	



RS-CMSA-ES:	Main	Components	(II)

• Core	algorithm:	Adapted	CMSA-ES	with	elitism	
(Beyer	and	Sendhoff,	2008)	

• A	restart	mechanism	with	dependent	restarts
• Hill-valley	function	(Ursem,	1999):	checks	

whether	two	solutions	share	the	same	basin.

• Semi-random	Initialization:	maximize	the	initial	

distance	between	subpopulations	and	the	archive	

• Very	promising	performance:	Winner	of	the	
GECCO	2017	competition	on	niching	methods.
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RLSIS:	Restarted	Local	Search	with	
Improved	Selection	of	Starting	Points

• Stratified	sampling	procedure	for	efficient	
initialization

• Nearest-better	clustering	to	approximate	

modes

• Local	search	procedure	to	accurately	locate	
mode	(Nelder-Mead	or	CMAES)

• Restart procedure
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RLSIS:	One-dimensional	Problems	

1. Stratified	sample	of	300	
points	

2. Nearest-better	clustering	of	
the	sample,	to	obtain	
approx.	local	optima	

3. Nelder-Mead	simplex	
search	for	each	selected	
point,	to	increase	precision	
(initial	step	size	10−4)	

• Consumed	budget	≈	1000	
evaluations	
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One-dimensional Problems

Procedure:
1. Stratified sample of 300 points
2. Nearest-better clustering of the

sample, to obtain approx. local
optima

3. Nelder-Mead simplex search for
each selected point, to increase
precision (initial step size 10≠4)

Example

Consumed budget ¥ 1000 evalutions

Restarted Local Search with Improved Sampling



Maximin Reconstruction Algorithm (MmR)
I Basic principle: maximization of minimal distance
I Complement with correction methods for edge e�ects

I Torus æ periodic edge correction (PEC)

I Mirroring æ reflection edge correction (REC) (not used here)
I Optional: consider a set of existing points (green points in (c))

(a) p = 0.5 (b) p = 2 (c) +PEC, +REC, p = 2

Restarted Local Search with Improved Sampling

RLSIS:	Maximin	Reconstruction	

Algorithm	(MmR)
• Basic	principle:	maximization	of	minimal	distance

Complement	with	correction	methods	for	edge	effects	
– Torus→	periodic	edge	correction	(PEC)	

– Mirroring→	reflection	edge	correction	(REC)	(not	used	here)	

• Optional:	consider	a	set	of	existing	points	(green	points	in	
(c))	
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S. Wessing, M. Preuss, and G. Rudolph. Assessing basin identification methods for locating multiple optima. In: Advances 
in Stochastic and Deterministic Global Optimization. Springer, 2016.



RLSIS:	Multi-dimensional	Problems

• Restarted	Local	Search	(RLS):
1. Determine	a	starting	point
2. Execute	local	search	(CMA-ES)	with	this	

starting	point

3. Go	to	1.	(restart)
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New: starting points and found optima are saved in 
an archive and considered by MmR in following 
iterations 

Multi-dimensional Problems
Restarted Local Search (RLS)

1. Determine a starting point
2. Execute local search (CMA-ES) with this starting point
3. Go to 1.

Local
Phase

Global
Phase

New: starting points and found optima are saved in an archive
and considered by MmR in following iterations

Restarted Local Search with Improved Sampling



CHALLENGES	IN	NICHING	METHODS
Multi-Modal	Optimization
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Challenges	in	Niching	Methods

• Searching	Efficiency	(local/global	search)
• Maintaining	found	solutions	(archives,…)
• Specifying	niching	parameters	(No	parameters!)

– Attempting	to	find	a	single	uniform	niche	radius

– Dynamic	niche	radius,	instead	of	fixed	one

– Avoid	to	specify/use	niche	parameters

• Scalability (dimension,	#optima)

• Measuring	performance
– Benchmarks	or	Real-World	applications
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BENCHMARK	TEST	FUNCTIONS	FOR	
MULTI-MODAL	OPTIMIZATION

Multi-Modal	Optimization
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CEC’2013	niching	benchmark

• A	common	platform	for	fair	and	easy	evaluation and	
comparisons of	different	niching	algorithms

• 20	benchmark	multimodal	functions	with	different	
characteristics

• 5	accuracy	levels:	ε	� {10−1 ,10−2 ,10−3 ,10−4 ,10−5}	

• The	benchmark	suite	and	the	performance	measures	
have	been	implemented	in:	C/C++,	JAVA,	MATLAB	&	
Python	(R	to	come	soon)
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X. Li, A. Engelbrecht, and M.G. Epitropakis, “Benchmark Functions for CEC’2013 Special 
Session and Competition on Niching Methods for Multimodal Function Optimization”, 
Technical Report, Evolutionary Computation and Machine Learning Group, RMIT University, 
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CEC	2013/2015/2016	competitions
• IEEE	CEC	niching	competitions	at	2013,2015	and	2016,	with	the	latest	

results	available	at	the	following	URL:
http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/

http://goanna.cs.rmit.edu.au/~xiaodong/cec15-niching/competition/

http://www.epitropakis.co.uk/cec16-niching/competition/

https://github.com/mikeagn/CEC2013
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20	test	functions

2/6/17 79
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20	test	functions	(graphs)



Determining	found	global	optima

• First	we	need	to	specify	a	level	of	accuracy	(typically	0	<	
ε ≤	1)
– a	threshold	value	under	which	we	would	consider	a	global	
optimum	is	found

• Second,	we	assume that	for	each	test	function,	the	
following	information	is	available:
– The	number	of	global	optima

– The	fitness	of	the	global	optima	(or	peak	height),	which	is	
known	or	can	be	estimated

– A	niche	radius	value	that	can	sufficiently	distinguish	two	
closest	global	optima
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Determining	found	global	optima
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8

• Initialization: Uniform random initialization within the
search space;

• Termination of a run: Terminate when reaching MaxFEs.
• Number of runs: 50.

Note that ✏ and r are to be used only at the end of a run,
for evaluations of the final solutions. Table I shows different
MaxFEs used for the 3 ranges of test functions.

TABLE I
MAXFES USED FOR 3 RANGES OF TEST FUNCTIONS.

Range of functions MaxFEs
F1 to F5 (1D or 2D) 5.0E+04

F6 to F11 (2D) 2.0E+05
F6 to F12 (3D or higher) 4.0E+05

For F8 (2D), we set k1 = 3 and k2 = 4, as shown in
Fig. 8. Table II shows an example of presenting PR and SR
values of a typical niching algorithm. Note that in this example
the PR and SR values are calculated based on the results of
a baseline model, DE/nrand/1/bin algorithm (see details in a
section below).

B. Convergence speed

Convergence speed is calculated according to equation (3),
using the same MaxFEs settings in Table I. The accuracy
level ✏ is set to 1.0E-04. Other parameters are the same as
in Table IV. Table V presents the convergence speed results
of the DE/nrand/1/bin algorithm.

To further illustrate the behaviour of the niching algorithm,
we can record the number of global optima found at different
iteration steps of a run. We recommend to use figures to show
the mean global optima found averaged over 50 runs, on 5
or 6 different test functions of your choice. We encourage
authors to follow a recent paper on niching [21] on how to
better present results.

C. Baseline models

To facilitate easy comparisons for participants in the
competition, we use as baseline models two Differen-
tial Evolution (DE) niching variants, the recently proposed
DE/nrand/1/bin algorithm [21] and the well known Crowding
DE/rand/1/bin [20]. DE/nrand/1/bin is a simple DE algorithm
which incorporates spatial information about the neighborhood
of each potential solution to produce a niching formation.
On the other hand, Crowding DE/rand/1/bin produces niching
formation by incorporating the crowding technique to maintain
a better population diversity and therefore to prevent premature
convergence to an optimum. The results of the two baseline
models are presented in Tables II, III, and Tables V, VI. Please
note that we did not conduct any fine-tuning on the parameters
of the baseline algorithms. Instead, we used the following
default parameters: population size NP = 100, F = 0.5,

CR = 0.9, and the crowding factor equals to the population
size CF = NP.

TABLE IV
PARAMETERS USED FOR PERFORMANCE MEASUREMENT.

Function r Peak height No. global optima
F1 (1D) 0.01 200.0 2
F2 (1D) 0.01 1.0 5
F3 (1D) 0.01 1.0 1
F4 (2D) 0.01 200.0 4
F5 (2D) 0.5 1.03163 2
F6 (2D) 0.5 186.731 18
F7 (2D) 0.2 1.0 36
F6 (3D) 0.5 2709.0935 81
F7 (3D) 0.2 1.0 216
F8 (2D) 0.01 -2.0 12
F9 (2D) 0.01 0 6
F10 (2D) 0.01 0 8
F11 (2D) 0.01 0 6
F11 (3D) 0.01 0 6
F12 (3D) 0.01 0 8
F11 (5D) 0.01 0 6
F12 (5D) 0.01 0 8
F11 (10D) 0.01 0 6
F12 (10D) 0.01 0 8
F12 (20D) 0.01 0 8

TABLE V
CONVERGENCE SPEEDS OF THE DE/NRAND/1/BIN ALGORITHM (WITH

ACCURACY LEVEL ✏ = 1.0E-04).

Function F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
Mean 22886.0 1552.0 1258.0 13610.0 3806.0
St. D. 2689.056 386.106 781.179 1399.453 618.890

Function F6(2D) F7(2D) F6(3D) F7(3D) F8(2D)
Mean 200000.0 200000.0 400000.0 400000.0 9858.0
St. D. 0.000 0.000 0.000 0.000 833.015

Function F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
Mean 200000.0 181658.0 200000.0 400000.0 400000.0
St. D. 0.000 42543.630 0.000 0.000 0.000

Function F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
Mean 400000.0 400000.0 400000.0 400000.0 400000.0
St. D. 0.000 0.000 0.000 0.000 0.000

TABLE VI
CONVERGENCE SPEEDS OF THE CROWDING DE/RAND/1/BIN ALGORITHM

(WITH ACCURACY LEVEL ✏ = 1.0E-04).

Function F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
Mean 50000.0 3386.0 2576.0 41666.0 12980.0
St. D. 0.000 1368.749 2625.974 3772.598 2046.799

Function F6(2D) F7(2D) F6(3D) F7(3D) F8(2D)
Mean 200000.0 200000.0 400000.0 400000.0 30306.0
St. D. 0.000 0.000 0.000 0.000 1984.677

Function F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
Mean 200000.0 200000.0 200000.0 400000.0 400000.0
St. D. 0.000 0.000 0.000 0.000 0.000

Function F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
Mean 400000.0 400000.0 400000.0 400000.0 400000.0
St. D. 0.000 0.000 0.000 0.000 0.000

V. RANKING METHOD

We will use peak ratio values in Table II as our key criterion
to rank algorithms submitted to this competition. The top
algorithm is the one that obtains the best average peak ratio,
across all test functions and 5 accuracy levels. If there is a tie,
then the algorithm having the lower AveFEs in Table V will
be the winner.
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CEC	2013/2015	niching	competition	

top	4	entries
• (NMMO)	Niching	Migratory	Multi-Swarm	Optimiser:

– J.	E.	Fieldsend,	"Running	Up	Those	Hills:	Multi-Modal	Search	with	the	Niching	
Migratory	Multi-Swarm	Optimiser,"	in	IEEE	Congress	on	Evolutionary	Computation,	
2014,	pp.	2593	– 2600.

• (NEA2)	Niching	the	CMA-ES	via	Nearest-Better	Clustering:
– M.	Preuss.	"Niching	the	CMA-ES	via	nearest-better	clustering."	In	Proceedings	of	

the	12th	annual	conference	companion	on	Genetic	and	evolutionary	computation	
(GECCO	’10).	ACM,	New	York,	NY,	USA,	pp.	1711-1718,	2010.	

• (LSEAGP)	Localised	Search	Evolutionary	Algorithm	using	a	Gaussian	Process:
– J.	E.	Fieldsend,	"Multi-Modal	Optimisation	using	a	Localised	Surrogates	Assisted	

Evolutionary	Algorithm,"	in	UK	Workshop	on	Computational	Intelligence	(UKCI	
2013),	2013,	pp.	88-95.	

• (dADE/nrand/1) A	Dynamic	Archive	Niching	Differential	Evolution	algorithm	
for	Multimodal	Optimization:
– M.	G.	Epitropakis,	Li,	X.,	and	Burke,	E.	K.,	"A	Dynamic	Archive	Niching	Differential	

Evolution	Algorithm	for	Multimodal	Optimization",	IEEE	Congress	on	Evolutionary	
Computation,	2013.	CEC	2013.	Cancun,	Mexico,	pp.	79-86,	2013.	
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CEC	2013/2015	niching	competitions
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Results

Results

Summary:
6 new search algorithms
4 comparators based on the competition @ CEC2013
20 multi-modal benchmark functions
5 accuracy levels e 2 {10�1,10�2,10�3,10�4,10�5}
Results: per accuracy level & over all accuracy levels
In total (CEC2013 & CEC2015) 21 algorithms in the
repository: https://github.com/mikeagn/CEC2013

X. Li, A. Engelbrecht, and M.G. Epitropakis IEEE CEC 2015 Competition on Niching Methods 9
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Results

Statistical Analysis

ALNM CrowdingDE dADE/nrand/1 DE/nrand/1 LSEAEA LSEAGP MEA MSSPSO NEA2
p/pb p/pb p/pb p/pb p/pb p/pb p/pb p/pb p/pb

CrowdingDE –/= N/A N/A N/A N/A N/A N/A N/A N/A
dADE/nrand/1 –/– +/+ N/A N/A N/A N/A N/A N/A N/A

DE/nrand/1 –/= =/= –/– N/A N/A N/A N/A N/A N/A
LSEAEA +/+ +/+ =/= +/+ N/A N/A N/A N/A N/A
LSEAGP –/– +/+ =/= +/+ =/= N/A N/A N/A N/A

MEA –/– –/– –/– –/– –/– –/– N/A N/A N/A
MSSPSO –/– –/– –/– –/– –/– –/– –/– N/A N/A

NEA2 +/+ +/+ +/+ +/+ –/= +/= +/+ +/+ N/A
NMMSO +/+ +/+ +/+ +/+ +/+ +/+ +/+ +/+ =/=

p: Wilcoxon rank-sum test
pb: Bonferroni correction
+ row wins column,
– row loses from column,
= non-significant differences
N/A: Not Applicable

X. Li, A. Engelbrecht, and M.G. Epitropakis IEEE CEC 2015 Competition on Niching Methods 17
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Results

Overall performance (3) CEC2013 + CEC2015

Algorithm Statistics Friedman’s Test
Median Mean St.D. Rank Score

NMMSO 0.9885 0.8221 0.2538 1 16.1900
NEA2 0.8513 0.7940 0.2332 2 16.1150
LSEAEA 0.9030 0.7477 0.3236 4 14.5050
dADE/nrand/1 0.7488 0.7383 0.3010 5 14.2450
LSEAGP 0.7900 0.7302 0.3268 3 14.7550
CMA-ES 0.7550 0.7137 0.2807 6 14.0800
N-VMO 0.7140 0.6983 0.3307 7 13.7600
ALNM 0.7920 0.6594 0.3897 9 12.4900
PNA-NSGAII 0.6660 0.6141 0.3421 11 11.2700
NEA1 0.6496 0.6117 0.3280 14 10.5250
DE/nrand/2 0.6667 0.6082 0.3130 10 11.2950
dADE/nrand/2 0.7150 0.6931 0.3174 8 12.8100
DE/nrand/1 0.6396 0.5809 0.3338 13 10.6150
DELS-aj 0.6667 0.5760 0.3857 15 9.6950
CrowdingDE 0.6667 0.5731 0.3612 12 10.6200
DELG 0.6667 0.5706 0.3925 16 9.4400
DECG 0.6567 0.5516 0.3992 17 8.9900
IPOP-CMA-ES 0.2600 0.3625 0.3117 18 5.8700
MEA 0.2075 0.3585 0.3852 19 5.2750
A-NSGAII 0.0740 0.3275 0.4044 20 4.7200
MSSPSO 0.0000 0.2188 0.3913 21 3.7350

X. Li, A. Engelbrecht, and M.G. Epitropakis IEEE CEC 2015 Competition on Niching Methods 20



Discussion

• The	competitions	gave	a	boost	to	the	MMO	
community	

• New	competitive	and very	promising	approaches	
• Key	characteristics	of	the	algorithms:

– New	methodologies: active	learning,	surrogates,	
Gaussian	Processes,	probabilistic	classifier	for	
prediction,	archives,	hill-valley	approaches

– Usage	of	local	models	to	maintain	diversity	and	
exploit	locally	the	neighborhoods	

– Algorithms:	EAs,	DE,	CMA-ES,	Multi-swarms,	and	
Bootstrap-LV	sampling.	
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Other	niching	benchmark	sets
• Earliest	work	on	designing	niching	benchmark	functions	was	carried	out	by	Deb	in	

his	master	thesis!
– K.	Deb,	“Genetic	algorithms	in	multimodal	function	optimization	(master	thesis	and	tcga	

report	no.	89002),”	Tuscaloosa:	University	of	Alabama,	The	Clearinghouse	for	Genetic	
Algorithms,	1989.

• Tunable	cosine	and	quadratic	function	families
– J.	Ronkkonen,	“Continuous	Multimodal	Global	Optimization	with	Differential	Evolution	Based	

Methods.	Acta	Universitatis	Lappeenrantaensis	363,	2009.

• Preuss/Lasarczyk	generator:	mixture	of	polynomials	(MPM)
– Preuss,	Lasarczyk.	On	the	importance	of	information	speed	in	structured	populations.	In	Proc.	

PPSN	VIII,	pp.	91–100,	2004

– improved	version	(MPM2)	in	the	dissertation	of	Simon	Wessing:	Two-stage	Methods	for	
Multimodal	Optimization.	TU	Dortmund,	2015

• Gallagher/Yuan	tunable	generator:	mixture	of	Gaussian	distributions	
– Gallagher	and	B.	Yuan.	A	general-purpose	tunable	landscape	generator.	IEEE	Trans.	

Evolutionary	Computation,	10(5):590–603,	2006

• Simple	and	composition	multimodal	functions
– Qu	et	al.	B.	Y.	Qu,	J.	J.	Liang,	Z.	Y.	Wang,	Q.	Chen,	and	P.	N.	Suganthan,	“Novel	benchmark	

functions	for	continuous	multimodal	optimization	with	comparative	results,”	Swarm	and	
Evolutionary	Computation,	vol.	26,	pp.	23–34,	2016.
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Performance	Measuring

• Two	main	components:

– Subset	solution	selection

– Performance	measuring

2/6/17 98

M. Preuss, Multimodal Optimization by Means of Evolutionary Algorithms, ser. Natural 
Computing Series. Springer International Publishing, 2016.



A	note	on	Performance	Measures
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Preuss, Wessing, Measuring Multimodal Optimization Solution Sets with a View to Multiobjective Techniques. In EVOLVE IV,  pp. 123–137, 2013
M. Preuss, Multimodal Optimization by Means of Evolutionary Algorithms, ser. Natural Computing Series. Springer International Publishing, 2016.

• Different advantages/disadvantages 
• Many connections with multi-objective metrics.
• Mostly used currently in literature: 

• Peak Ratio (PR), (problematic)
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GECCO	2016	Competition	(I)

• Largely	follows	the	procedures	of	the	2013/2015	CEC	niching	

competitions,	adopt	new	performance	criteria:

2/6/17 101

Introduction

GECCO Competition (I)

Largely follows the procedures of the 2013/2015 CEC niching
competitions, adopt new performance criteria:

Improved Scenarios
Include information on the resources (time, function
evaluations) needed to find the global optima, not only the
fraction of successes within a given time period (number of
evaluations), and
Take into account the size of the final solution set, and
reward small sets that mostly consist of the sought optima
only.

M. G. Epitropakis, M. Preuss, A. Engelbrecht and X. Li GECCO 2016 Competition on Niching Methods 6



GECCO	2016	Competition	(II)
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Introduction

GECCO Competition (II)

Three different Scenarios (performance evaluation):
Scenario I: Adopt the CEC2013/2015 competition ranking
procedure (based on average Peak Ratio), to facilitate
straight forward comparisons with all previous competition
entries.
Scenario II: Adopt the (static) F1 measure to take into
account the recall and precision of the final solution sets
Scenario III: Adopt the (dynamic) F1 measure integral
over the whole runtime to take into account the
computational efficiency of the submitted algorithm

Ranking based on average values across all
problems/accuracy levels of the aforementioned measures are
used to decide the winner.

M. G. Epitropakis, M. Preuss, A. Engelbrecht and X. Li GECCO 2016 Competition on Niching Methods 7



Participants
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Participants

Participants

Submissions to the competition:
(rlsis): Restarted Local Search with Improved Selection of
Starting Points, Simon Wessing
(rs-cmsa-es): Benchmarking Covariance Matrix Self
Adaption Evolution Strategy with Repelling Subpopulations
for GECCO 2016 Competition on Multimodal Optimization,
Ali Ahrari, Kalyanmoy Deb and Mike Preuss
(ascga): Adaptive species conserving genetic algorithm,
Jian-Ping Li, Felician Campean
(nea2+): Niching the CMA-ES via Nearest-Better
Clustering: First Steps Towards an Improved Algorithm,
Mike Preuss
(nmmso) Niching Migratory Multi-Swarm Optimiser, J.
Fieldsend

M. G. Epitropakis, M. Preuss, A. Engelbrecht and X. Li GECCO 2016 Competition on Niching Methods 8Baseline algorithms: CMA-ES, IPOP-CMA-ES, NEA1, NEA2



GECCO	2016	Competition	Setup
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Results

Results

Summary:
5 new search algorithms
4 classic algorithm comparators
20 multi-modal benchmark functions
5 accuracy levels e 2 {10�1,10�2,10�3,10�4,10�5}
Results: per accuracy level & over all accuracy levels
Latest version always in the repository:
https://github.com/mikeagn/CEC2013

M. G. Epitropakis, M. Preuss, A. Engelbrecht and X. Li GECCO 2016 Competition on Niching Methods 10



Scenario	I:	Accuracy	level	10-1
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Scenario	I:	Accuracy	level	10-2
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Scenario	I:	Accuracy	level	10-3
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Scenario	I:	Accuracy	level	10-4
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Scenario	I:	Accuracy	level	10-5
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Scenario	I:	Overall	performance

2/6/17 110

●●

●

●●●● ●●●●●● ●

●

●

●

●

●

●●●
●
●●

●●●

●

●
●

●

●●●
●

●●

●●●

●

●●●●

●
●

● ●0.00

0.25

0.50

0.75

1.00

ALN
M

Crow
din

gD
E

dA
DE/nr

an
d/1

DE/nr
an

d/1

LS
EAEA

LS
EAGP

MEA

MSSPSO
NEA2

NMMSO

Pe
ak

 R
at

io
 in

 a
ll b

en
ch

m
ar

k 
fu

nc
tio

ns Algorithms
ALNM
CrowdingDE
dADE/nrand/1
DE/nrand/1
LSEAEA
LSEAGP
MEA
MSSPSO
NEA2
NMMSO

All Accuracy levels



Scenario	II:	Accuracy	level	10-1
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Scenario	II:	Accuracy	level	10-2
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Scenario	II:	Accuracy	level	10-3
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Scenario	II:	Accuracy	level	10-4
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Scenario	II:	Accuracy	level	10-5
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Scenario	II:	Overall	performance
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Scenario	III:	Accuracy	level	10-1
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Scenario	III:	Accuracy	level	10-2
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Scenario	III:	Accuracy	level	10-3
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Scenario	III:	Accuracy	level	10-4
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Scenario	III:	Accuracy	level	10-5
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Scenario	III:	Overall	Performance
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GECCO	2016:	Overall	Performance
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Results

Overall performance

Alg. Sc.I Rank Sc.II Rank Sc.III Rank Mean Rank Final Rank
ascga 0.349 5 0.065 5 0.236 4 4.666 5
nea2+ 0.688 4 0.720 3 0.811 2 3.000 3
nmmso 0.701 2 0.091 4 0.218 5 3.666 4

rlsis 0.698 3 0.799 2 0.663 3 2.666 2
rs-cmsa 0.827 1 0.900 1 0.839 1 1.000 1

M. G. Epitropakis, M. Preuss, A. Engelbrecht and X. Li GECCO 2016 Competition on Niching Methods 29

Note: The algorithms have not been fine-tuned for the specific benchmark suite!



GECCO	2016:	Winners
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Discussion:	GECCO	2016

• The	competitions	gave	a	boost	to	the	MMO	

community	

• New	competitive	and very	promising	approaches	
• Key	characteristics	of	the	algorithms:

– New	methodologies: repelling,	restarts,	clustering,	
surrogates,	hill-valley	approaches,	post-processing

– Usage	of	local	models	to	maintain	diversity	and	
exploit	locally	the	neighborhoods	

– Algorithms:	CMA-ES,	GAs,	Evolutionary	Algorithms,	

and	Multi-swarms
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NICHING	IN	SPECIALIZED	TASKS
Multi-Modal	Optimization
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Niching	In	Specialized	Tasks

• Niching	provides	

more	effective	
problem	solving	in	
a	diverse	range	of	

tasks

• It	also	benefits	from	
its	interaction	with	
these	areas
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NICHING	IN	DYNAMIC	
OPTIMIZATION

Multi-Modal	Optimization
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SPSO	for	tracking	optima
• In	a	dynamic	environment	the	goal	is	to	track as	closely	as	possible	the	

dynamically	changing	optima
• A	useful	strategy	to	ensure	good	tracking	of	the	global	optimum	is	to	

maintain	multiple	species	at	all	the	optima	found	so	far,	regardless	
whether	they	are	globally	or	locally	optimal

• Bymaintaining	individual	species	at	each	local	optimum,	it	helps	
tremendously	in	case	when	such	a	local	optimum	turns	into	a	global	
optimum
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X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation and adaptation in a dynamic environment,” 
in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,  GECCO ’06. New 
York, NY, USA: ACM, 2006, pp. 51–58.



Niching	in	Dynamic	Environments
• Vector-based	PSO:	utilize	directional	information	provided	by	the	

particles	in	a	swarm	to	adaptively	form	niches	in	parallel	to	track	multiple	
dynamically	changing	optima

– I.	Schoeman	and	A.	Engelbrecht,	“Niching	for	dynamic	environments	using	particle	swarm	optimization,”	in	
SEAL,	2006,	vol.	4247,	pp.	134–141.	

• rSPSO:	simple	regressionmethod	with	Speciation-based	PSO	to	speed	up	
local	convergence	and		to	estimate	and	predict	the	positions	of	the	
changing	optima

– S.	Bird	and	X.	Li,	Computational	Intelligence	in	Expensive	Optimization	Problems.	Springer,	2010,	Improving	
Local	Convergence	in	Particle	Swarms	by	Fitness	Approximation	Using	Regression,	pp.	265–293.

– S.	Bird	and	X.	Li,	“Using	regression	to	improve	local	convergence,”	in	Evolutionary	Computation,	2007.	CEC	
2007.	IEEE	Congress	on,	Sept	2007,	pp.	592–599.	

• Multi-population	niching	based	algorithms
– D.	Parrott	and	X.	Li,	“Locating	and	tracking	multiple	dynamic	optima	by	a	particle	swarm	model	using	

speciation,”	IEEE	Trans.	on	Evol.	Comput.,	vol.	10,	no.	4,	pp.	440–458,	August	2006.	

– T.	Blackwell	and	J.	Branke,	“Multi-swarms,	exclusion,	and	anti- convergence	in	dynamic	environments,”	
Evolutionary	Computation,	IEEE	Transactions	on,	vol.	10,	no.	4,	pp.	459–472,	2006.	

– X.Li,	J.Branke,	and	T.Blackwell,	“Particle	swarm	with	speciation	and	adaptation	in	a	dynamic	environment,”	in	
Proceedings	of	the	8th	Annual	Conference	on	Genetic	and	Evolutionary	Computation,	ser.	GECCO	’06.	New	
York,	NY,	USA:	ACM,	2006,	pp.	51–58.	

– T.	Blackwell,	J.	Branke,	and	X.	Li,	Swarm	Intelligence:	Introduction	and	Applications.	Berlin,	Heidelberg:	
Springer	Berlin	Heidelberg,	2008,	ch.	Particle	Swarms	for	Dynamic	Optimization	Problems,	pp.	193–217.	
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NICHING	IN	MULTI-OBJECTIVE	
OPTIMIZATION

Multi-Modal	Optimization
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EMO	solution	diversity
• Although	diversity	maintenance	is	a	much	common	issue	in	any	

population-based	meta-heuristics,	it	is	possible	to	use	niching	
methods	for	maintaining	solution	diversity
– Early	example	is	the	Niched-Pareto	GA	(NGPA)	(Horn,	et	al.,	1994)	,	

which	is	a	multi-objective	GA	using	a	variant	of	fitness	sharing	to	
maintain	Pareto	solution	diversity	in	the	objective	space		

– Another	example	is	the	crowding	distance	metric	used	in	NSGA-II	
(Deb,	et	al.,	2002)

• Much	attention	has	been	given	to	maintaining	solution	
diversity	in	the	objective	space

• However,	little	attention	has	been	given	to	how	to	maintain	
solution	diversity	in	the	decision	space
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J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm for Multiobjective Optimization,” in Proc. of 
the First IEEE Conference on Evolutionary Computation, vol. 1. IEEE Service Center, 1994, pp. 82–87.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” Evolutionary 
Computation, IEEE Transactions on, vol. 6, no. 2, pp. 182–197, Apr 2002.



Diversity	in	both	spaces
• A	MOEA	(e.g.,	MOEA	Niching-CMA)	can	produce	a	much	more	diverse	

set	of	efficient	solutions	(i.e.,	solutions	in	the	decision	space),	without	
sacrificing	objective	space	diversity	(Shir,	et.	al.	2009)
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An example where two solutions that are close in the objective space but their 
corresponding points in the decision space are further apart

O. M. Shir, M. Preuss, B. Naujoks, and M. Emmerich, “Enhancing decision space diversity in evolutionary multiobjective 
algorithms,” in Proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization, ser. EMO 
’09. Berlin, Heidelberg: Springer- Verlag, 2009, pp. 95–109.

Decision space Objective space



Omni-Optimizer
• Allows	degeneration	of	NSGA-II	into	a	single	objective	
multimodal	optimization	method	(i.e.,	a	niching	method)

• A variable	space	crowding	distance	metric	is	used	to	
encourage	distant	solutions	in	the	decision	space	to	
remain	in	the	population

• Distant	solutions	with	similar	or	equal	objective	function	
values	will	survive

• Omni-Optimizer can	degenerate	to	a	niching	method	for	
single/multi-objective	multi-modal	optimization,	capable	
of	finding	multiple	Pareto-optimal	fronts
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K. Deb and S. Tiwari, “Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization.” 
European Journal of Operational Research, vol. 185, no. 3, pp. 1062–1087, 2008.



NICHING	FOR	CLUSTERING	AND	
MACHINE	LEARNING

Multi-Modal	Optimization
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Clustering

• Aim:	to	group	data	points	into	clusters,	such	that	
– points	in	each	cluster	have	a	high	degree	of	similarity
– points	in	different	clusters	have	a	high	degree	of	
dissimilarity

– A	similarity	metric	is	often	based	on	some	distance	
measure	between	these	data	points

• Both	clustering and	niching share	some	common	
features:
– data	points	seen	as	individuals
– clusters	as	niches

• Clustering	methods	can	be	used	to	do	niching,	
and	vice	versa.
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Clustering	examples

2/6/17 138Figure from: http://scikit-learn.org



Clustering	for	Niching

• Clustering	methods	(k-means,	NBC,	etc)	can	be	used	to	
sub-divide	the	population	into	clusters	(or	niches)
– Identification	of	species/niches

– Species	conserving,	topological	species	conservation	

• Exploit each	of	the	niches	accordingly
– CMA-ES	(NEA2),	GAs	(SCGA,	TSC),	DE/PSO	

• Other	characteristic	examples	include:
– Clustering-based	niching	methods	based	on	dynamic	niche	
sharing,	dynamic	niche	clustering,	and	dynamic	fitness	
sharing	

– Automatically	estimate	clustering	parameters	(such	as	k	in	
k-means)

2/6/17 139

X. Yin and N. Germay, “A fast genetic algorithm with sharing scheme using cluster analysis methods in multi-modal 
function optimization,” in the International Conference on Artificial Neural Networks and Genetic Algorithms, 1993, pp. 
450–457.



Clustering	for	Niching	(references)
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• X. Yin and N. Germay, “A fast genetic algorithm with sharing scheme using cluster analysis methods 
in multi-modal function optimization,” in the International Conference on Artificial Neural Networks 
and Genetic Algorithms, 1993, pp. 450–457.

• M. Preuss. "Niching the CMA-ES via nearest-better clustering." In Proceedings of the 12th annual 
conference companion on Genetic and evolutionary computation (GECCO ’10). ACM, New York, 
NY, USA, pp. 1711-1718, 2010

• A. Della Cioppa, C. De Stefano, and A. Marcelli, “Where are the niches? dynamic fitness sharing,” 
Evolutionary Computation, IEEE Transactions on, vol. 11, no. 4, pp. 453–465, Aug 2007. 

• B. L. Miller and M. J. Shaw, “Genetic algorithms with dynamic niche sharing for multimodal function 
optimization,” in Proceedings of the 1996 IEEE International Conference on Evolutionary 
Computation, May 1996, pp. 786–791. 

• J. Gan and K. Warwick, “Dynamic niche clustering: a fuzzy variable radius niching technique for 
multimodal optimisation in gas,” in Proc. of the 2001 Congress on Evolutionary Computation. IEEE 
Press, 2001, pp. 215–222. 

• J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species conserving genetic algorithm for 
multimodal function optimization,” Evol. Comput., vol. 10, no. 3, pp. 207–234, 2002. 

• C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu, “Multimodal optimization by means of a 
topological species conservation algorithm,” Evolutionary Computation, IEEE Transactions on, vol. 
14, no. 6, pp. 842–864, Dec 2010. 

• D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis, “Clustering in evolutionary algorithms to 
efficiently compute simultaneously local and global minima,” in 2005 IEEE Congress on 
Evolutionary Computation, vol. 2, Sept 2005, pp. 1847–1854 Vol. 2. 

• V. P. Plagianakos, “Unsupervised clustering and multi-optima evolutionary search,” in 2014 IEEE 
Congress on Evolutionary Computation (CEC), July 2014, pp. 2383–2390. 



Niching	for	clustering	(I)

• A	clustering problem	can	be	formulated	as	a	multi-modal	
optimization	problem,	and	be	handled	by	a	niching	method.

• We	can	define	a	density-based	fitness	function	that	would	
reach	a	maximum	at	every	good	cluster	center.	

• The	value	of	the	fitness	function	will	be	high	for	points	falling	
within	the	boundary	of	a	cluster,	and	low	for	points	falling	
outside	of	the	cluster.

• The	results	in	Nasraoui,	et	al.	(2005)	suggested	that	the	
niching	approach	for	clustering	to	be	less	prone	than	non-
niching	techniques	to	premature	convergence,	noise,	and	
initialization.
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O. Nasraoui, E. Leon, and R. Krishnapuram, “Unsupervised niche clustering: Discovering an unknown number of clusters in noisy data 
sets,” in Evolutionary Computation in Data Mining, ser. Studies in Fuzziness and Soft Computing, A. Ghosh and L. Jain, Eds. Springer 
Berlin Heidelberg, 2005, vol. 163, pp. 157–188.



Niching	for	clustering	(II)
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Nasraoui, et al. (2005) proposed an 
Unsupervised Niche Clustering
algorithm (UNC) and evaluated its 
performance under different conditions 
related to cluster size, density, noise 
contamination, orientation, and number 
of clusters. Their results were presented 
on the 9 noisy data sets (see the figure 
on the right):

(a) original data set;
(b) results of UNC;
(c) results of K-means with pre-

specified correct c (the number of 
clusters); 

(d) results of PCM with pre-specified 
correct c;

O. Nasraoui, E. Leon, and R. Krishnapuram, “Unsupervised niche clustering: Discovering an unknown number of clusters in noisy data sets,” in 
Evolutionary Computation in Data Mining, 2005, vol. 163, pp. 157–188.



Feature	Selection

• The	aim	of	feature	selection	is	to	choose	features	
that	allow	us	to	discriminate	patterns	belonging	
to	different	classes

• Feature	selection	algorithms	are	generally	
classified	into	

– wrapper	methods	make	use	of	a	learning	classifier’s
performance	to	evaluate	the	suitability	of	the	feature	
subset

– filter	methods	treat	the	selection	of	feature	subsets	
as	a	pre-processing	step,	independent	from	the	
learning	classifier.
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Niching	for	Feature	Selection
• Optimal	subset	of	features	might	not	be	unique

– Merit	for	obtaining	all	such	optimal	subsets before	the	final	choice

• Different	optimal	subsets	of	features	are	considered	as	different	optima	
on	a	multi-modal	fitness	landscape (searched	by	niching	methods)

• Example	representation	of	a	subset	of	the	selected	features:	binary	
string
– 1 indicates	that	the	i-th	feature	is	included in	the	subset,	otherwise	(0)	the	

feature	is	excluded

• Evaluate	the	goodness	of	a	subset:	
– the	binary	string	is	fed	into	a	learning	classifier	(e.g.,	neural	network)

• Fitness	function	takes	into	account:	
– the	classifier	accuracy	term	and	

– the	penalty	for	selecting	a	large	number	of	features
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F. Brill, D. Brown, and W. N. Martin, “Fast generic selection of features for neural network classifiers,” Neural Networks, 
IEEE Transactions on, vol. 3, no. 2, pp. 324–328, Mar 1992.



Niching	for	Machine	Learning

• Machine	Learning	(ML)	plays	an	increasingly	important	role	
in	data	analytics	these	days:	
– predict	by	learning	from	data

• Many	real-world	problems	are	often	too	large	and	complex	
to	be	solved	by	a	single	machine	learning	model	

• An	effective	approach	may	be	to	employ	an	ensemble	of	
learning	models,	each	specializing	in	solving	a	subtask	of	a	
much	larger	problem.

• Meta-heuristic	algorithms	can	be	used	to	evolve	a	
population	of	ML	models
– e.g.,	an	ensemble	of	neural	networks,	or	a	set	of	knowledge	

rules.
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Y. Liu and X. Yao, “Simultaneous training of negatively correlated neural networks in an ensemble,” IEEE Transactions on Systems, Man, and 
Cybernetics, Part B (Cybernetics), vol. 29, no. 6, pp. 716–725, Dec 1999.
M. L. Wong and K. S. Leung, Data Mining Using Grammar-Based Genetic Programming and Applications. Norwell, MA, USA: Kluwer 
Academic Publishers, 2000.



Evolving	neural	network	ensembles
• Niching	techniques	(Speciation)	used	to	evolve	a	diverse	but	accurate	

set	of	specialist	modules,	which	can	be	then	combined	to	perform	
learning	tasks

• Evolutionary	Ensembles	with	Negative	Correlation	Learning	(EENCL)[Liu	
et	al.	(2000)]	automatically	determine	the	number	of	individual	
neural	networks	in	an	ensemble

• Motivation:	A	population	contains	more	information	than	a	single	
individual

• Fitness	sharing	was	adopted	to	promote	diversity	in	the	ensemble:
– If	one	training	example	is	learnt	correctly	by	n individual	neural	networks,	

then	each	of	these	n neural	networks	receives	a	fitness	value	1/n,	and	the	
remaining	neural	networks	in	the	ensemble	receive	zero	fitness

– This	procedure	is	repeated	for	all	examples	in	the	training	set

– The	final	fitness	of	an	individual	is	determined	by	summing	up	its	fitness	
values	over	all	training	examples
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Learning	multiple	rules	from	data

• In	data	mining:	meta-heuristics	can	be	used	to	extract	knowledge	such	
as	rules	and	use	these	rules	to	solve	classification	problems	

– the	Michigan	approach:	where	each	individual	encodes	a	single	
rule,	and

– the	Pittsburgh	approach	where	each	individual	represents	multiple	

rules,	i.e.,	a	rule	set.

• Since	it	is	often	difficult	to	capture	the	knowledge	of	a	data	set	by	a	

single	rule,	multiple	rules	are	often	required
• Niching	methods	can	be	used	to	evolve	multiple	different	good	

individuals	that	are	required	to	produce	a	rule	set:
– See	for	example,	in	the	idea	of	“token	competition”	[Wong	and	

Leung	(2000)]
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IEEE	CIS	Taskforce	on	MMO

• The	key	objective	is	to	promote	research	on	multi-modal	optimization,	
including	its	development,	education	and	understanding	of	sub	topic	areas	of	

multi-modal	optimization.	Further	info:	http://www.epitropakis.co.uk/ieee-

mmo/

• Current	chair:	Michael	G.	Epitropakis	(Lancaster	University,	UK).	

• Vice-Chairs:	Andries	Engelbrecht	(University	of	Pretoria,	South	Africa),	and	
Xiaodong	Li	(RMIT	University,	Australia).

• Members:		Carlos	A.	Coello	Coello,	Kalyanmoy	Deb,	Andries	Engelbrecht,	

Michael	G.	Epitropakis,		Jonathan	Fieldsend,	Jian-Ping	Li,		Xiaodong	Li,	Jonathan	

Mwaura,	Konstantinos	Parsopoulos,	Vassilis	Plagianakos,	Mike	Preuss,	Bruno	

Sareni,	Ofer	M.	Shir,	Patrick	Siarry,	P.	N.	Suganthan,	Michael	N.	Vrahatis,	Simon	

Wessing,	Xin	Yao.
2/6/17 149



IEEE	CIS	Taskforce	on	MMO

• Past	and	planned	activities:
– IEEE	CEC	2010,	2013,	2015,	2016	and	2017	special	sessions	and/or	

competitions on	“Niching	Methods	for	Multimodal	Optimization”.

– GECCO 2016,	2017	competitions on	“Niching	Methods	for	Multimodal	

Optimization”.

– International	Workshop on "Advances	in	Multimodal	Optimization",	PPSN
2014,	PPSN 2016.

– Tutorials at	WCCI 2016,	PPSN 2014,	CEC 2017.
– More	activities	to	come	soon…

• A	repository	for	related	material,	publications	and	source	code.
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Summary
• Niching	methods	have	been	studied	for	the	past	few	decades,	and	

now	experience	a	revival,	as	more	people	from	diverse	backgrounds	
find	its	relevance	in	their	own	disciplinary	areas.

• Niching	methods	can	be	developed	using	other	meta-heuristics,	apart	
from	evolutionary	algorithms.

• Niching has	its	application	in	many	problem	solving	domains,	e.g.,	
dynamic	optimization	and	multi-objective	optimization.

• A	good	starting	point	for	new	comers:	several	survey	papers	are	
available,	plus	recently	a	new	book	by	Mike	Preuss.

• Many	open	research	questions	and	challenges	to	be	addressed.
• Many	possible	real-world	applications	of	niching	methods.
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New	book	on	MMO!!!

• Describes	state	of	the	art	in	

algorithms,	measures	and	test	

problems

• Approaches	multimodal	

optimization	algorithms	via	

model-based	simulation	and	

statistics

• Valuable	for	practitioners	with	

real-world	black-box	problems
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Recent	Survey	on	MMO	@	IEEE	TEVC
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Seeking Multiple Solutions: An Updated Survey on
Niching Methods and Their Applications

Xiaodong Li, Michael G. Epitropakis, Kalyanmoy Deb, Andries Engelbrecht

Abstract—Multi-Modal Optimization (MMO) aiming to locate
multiple optimal (or near-optimal) solutions in a single simulation
run has practical relevance to problem solving across many fields.
Population-based meta-heuristics have been shown particularly
effective in solving MMO problems, if equipped with specifically-
designed diversity-preserving mechanisms, commonly known as
niching methods. This paper provides an updated survey on nich-
ing methods. The paper first revisits the fundamental concepts
about niching and its most representative schemes, then reviews
the most recent development of niching methods, including novel
and hybrid methods, performance measures, and benchmarks
for their assessment. Furthermore, the paper surveys previous
attempts at leveraging the capabilities of niching to facilitate
various optimization tasks (e.g., multi-objective and dynamic
optimization) and machine learning tasks (e.g., clustering, feature
selection, and learning ensembles). A list of successful applica-
tions of niching methods to real-world problems is presented
to demonstrate the capabilities of niching methods in providing
solutions that are difficult for other optimization methods to
offer. The significant practical value of niching methods is clearly
exemplified through these applications. Finally, the paper poses
challenges and research questions on niching that are yet to be
appropriately addressed. Providing answers to these questions is
crucial before we can bring more fruitful benefits of niching to
real-world problem solving.

Index Terms—Niching methods, Multi-modal optimization,
Meta-heuristics, Multi-solution methods, Evolutionary computa-
tion, Swarm intelligence.

I. INTRODUCTION

THIS paper presents an updated survey on niching meth-
ods, which are Multi-Modal Optimization (MMO) meth-

ods aiming at locating multiple optimal solutions in a single
execution run. In many real-world situations, a decision maker
prefers to have multiple optimal (or close to optimal) solutions
at hand before making a final decision. If one solution is not
suitable, an alternative solution can be adopted immediately. A
good practical example is the well-publicized Second Toyota
Paradox [1], which shows that delaying decisions and pur-
suing multiple candidate solutions concurrently can produce
better cars faster and cheaper during the car manufacturer’s
production process.
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The goal of locating multiple optimal solutions in a single
run by niching methods contrasts sharply with the goal of a
classic optimization method [2], which usually starts from an
initial single point and iteratively improving it, before arriving
at one final solution. Since it is not guaranteed that starting
at different initial points will arrive at different solutions with
multiple runs, classic optimization methods are not suited for
the purpose of locating multiple solutions. This goal is also
different from the usual single-optimum seeking mechanism
employed by a standard meta-heuristic method. In literature,
sometimes “multi-modal optimization” also refers to seeking a
single optimum on a multi-modal fitness landscape. To avoid
this confusion and to be more precise, in this paper we also
refer to niching methods as “multi-solution” methods.

Classic niching methods, including fitness sharing [3] and
crowding methods [4], were developed in the early 70s and
80s. In subsequent years, many niching methods have been
proposed. Some representative examples include deterministic
crowding [5], derating [6], restricted tournament selection
[7], parallelization [8], clustering [9], stretching and deflation
[10], [11], and speciation [12], [13]. Initially, niching methods
were developed for Evolutionary Algorithms (EAs). How-
ever, recently niching methods were also developed for other
meta-heuristic optimization algorithms [14], such as Evolu-
tion Strategies (ES), Particle Swarm Optimization (PSO), and
Differential Evolution (DE).

It is interesting to note that though several subareas of meta-
heuristics, such as evolutionary multi-objective optimization
(EMO) and constrained optimization, have gained widespread
acceptance going even beyond the meta-heuristic research
community, niching methods are perceived to have failed in
making a similar impact. Research on niching methods is seen
by many as a byproduct of research on population diversity
preservation, which is an important issue to deal with in
standard meta-heuristic algorithms. It is a common perception
that niching methods have limited use in real-world problem
solving because of the difficulties faced when applying them
(see Section V). Nevertheless, literature review suggests that
research on niching methods is continuing to demonstrate
remarkable success in facilitating various optimization tasks
across a wide range of real-world application areas. In recent
years, niching methods have been developed taking into ac-
count the unique characteristics of new meta-heuristic methods
such as PSO and DE, injecting renewed vitality to this classic
optimization topic. The resurgence of research interests in
MMO is clearly evident from the rapidly increasing number
of research publications in this area, as shown in Figure 1.
Seeking multiple optimal (or good sub-optimal) solutions in a
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