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Objective

• Presenting new operators for Genetic Programming
(geometric semantic operators)

• Their theoretical advantages

• Their practical (real-world) applications
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Agenda
• Optimization Problems and Fitness Landscapes
• Genetic Algorithms  (geometric operators)
• Genetic Programming  (geometric semantic operators)
• Implementation of geometric semantic operators

• Discussion/Open Issues

• Real-Life Applications:
• Drug Discovery (prediction of pharmacokinetic parameters)
• Prediction of the Unified Parkinson’s Disease Rating Scale 

Assessment
• Prediction of high performance concrete strength

• Prediction of the Relative Position of Computer 
Tomography (CT) Slices

• Forecasting of Energy Consumption
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Part I – Geometric Semantic GP
• Optimization Problems and Fitness Landscapes
• Genetic Algorithms  (geometric operators)
• Genetic Programming  (geometric semantic operators)
• Implementation of geometric semantic operators

• Discussion/Open Issues

• Drug Discovery (prediction of pharmacokinetic parameters)
• Pred. of the Unif. Parkinson’s Disease Rat. Scale Assess.
• Prediction of high performance concrete strength
• Pred. of the Rel. Pos. of Computer Tomography (CT) Slices
• Forecasting of Energy Consumption

Part II – Real-Life Applications

Part III – Conclusions 
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PART I

Geometric Semantic
Genetic Programming
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Main reference for this first part:

L. Vanneschi. 
An Introduction to Geometric Semantic Genetic Programming. 
NEO 2015: Results of the Numerical and Evolutionary 
Optimization Workshop NEO 2015, held at September 23-25 
2015 in Tijuana, Mexico. Pages 3-42.
O. Schutze, L. Trujillo, P. Lagrand and Y. Maldonado Editors.
Springer International Publishing.
2017.

isbn=978-3-319-44003-3
doi=10.1007/978-3-319-440033_1,
url=http://dx.doi.org/10.1007/978-3-319-44003-3_1
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Let’s start with a very light introduction to 
optimization problem...

The content of this very first part is well-known to the audience, but 
it is used to fix a terminology that will be used in the continuation...
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Optimization Problems

Informally

solving an optimization problem means to find the 
best solution(s) in a (typically huge) set of other 
candidate solutions

A little bit more formally

A pair:  (S, f)

where S is the set of all possible solutions (we will call it 
search space) and f is a function:

f = S o R

f quantifies the quality of the solutions in S and it is called cost 
function or fitness function.
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Optimization Problems - Definitions

An optimization problem is a minimization problem if it consists in looking 
for a solution o � S, such that:

f(o) ≤ f(i),  � i � S

An optimization problem is a maximization problem if it consists in 
looking for a solution o � S, such that:

f(o) ≥ f(i),  � i � S

Such a solution is called global optimum (minimum or maximum) 
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Hill Climbing
The most natural and immediate method to solve an optimization problem.

It consists in trying to improve fitness step by step (stepwise 
improvement) by means of the concept of neighborhood.

Ni = neighborhood of solution i

INITIALIZE(istart);

i := istart;

repeat
GENERATE(j from Ni);

if f(j) better than f(i)  then i := j;

until f(i) better than f(j), � j � Ni;
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Hill Climbing - Example
Consider the following maximization problem:

S = { i |    i � &    0 ≤ i ≤ 15 }N

� i � S,   f(i)  = number of "1"s in the binary representation of i

Neighborhood:     j � Ni � | j - i | = 1

Steps of the algorithm:

• Current solution (randomly generated):  i = 6 (0110)   f(i) = 2
neighbors of i = 5 (0101), 7 (0111) f(5) = 2, f(7) = 3 new current solution:  i := 7

• neighbors of i = 6 (0110), 8 (1000)   f(6) = 2, f(8) = 1 algorithm terminates

Solution returned:  i = 7 (0111)       f(i) = 3
Global optimum:   o = 15 (1111)    f(o) = 4

The solution returned by the Hill 
Climbing is a “local optimum”.
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Local Optima

A solution j � S is called local optimum (as regards a 
neighborhood structure N), if: 

for minimization problems:
f(j) ≤ f(i)    � i � Nj

for maximization problems:
f(j) ≥ f(i)    � i � Nj

Hill Climbing always returns a local optimum (not 
necessarily the global one).
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Fitness Landscape

Hill Climbing

Plot: horizontal axis: solutions in the search space (ordered according 
to the neighborhood structure); vertical axis: fitness.
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Fitness Landscape

(courtesy of Sebastien Verel)
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Importance of Fitness Landscape
It gives a visual intuition of the facility or difficulty of a search agent (like Hill 
Climbing, but also Evolutionary Algorithms) to find the global optimum.  
For instance: 

• Smooth landscape, with only one "peak" (global optimum)
easy problem

• Rugged landscape, with many local optima
hard problem

Limitation of fitness landscapes
It is generally impossible to draw a fitness landscape:

• Huge search space

• Huge neighborhoods  (multi-dimensionality!)
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Remark that...
if we consider exactly the same problem, but with a different 
neighborhood structure, the fitness landscape changes and Hill 
Climbing easily finds easily the global optimum:

S = { i |    i � &    0 ≤ i ≤ 15 }N

� i � S,   f(i)  = number of "1"s in the binary representation of i

Neighborhood:  j � Ni � the binary repr. of j and i differ by just 1 bit

There are no local optima in this fitness landscape!
Unimodal fitness landscape.
(every individual that is different from the global optimum has at least 
one neighbor better than him, that can be obtained by changing a 0 
into a 1).
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Another Case
S = { vectors of prefixed length of real numbers included in [0,10] }

� i � S,   f(i)  = distance to a prefixed (and known and unique) global optimum

Example

[5.2, 6.4, 2.1, 4.9, 3.7]

A solution i

[8.0, 6.0, 4.0, 7.0, 5.0]The global optimum 

closer!

[5.8, 6.4, 2.9, 4.9, 3.6]

A solution j neighbor of i

Neighborhood:     j � Ni � j is equal to i except for the random perturbation of 
some of its coordinates of a quantity included in [0,1].
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Terminology about the previous example

The operator that is “related” to the neighborhood structure of the 
previous example is called ball mutation. 

Let us give a name to the previous problem:
Continuous Optimization with Notorious Optimum (CONO)
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Evolutionary Algorithms

... and the winner is...

Initial Population

Selection

Intermediate Population

Genetic Operators (Variation)
(typically crossover and mutation)

New Population
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Genetic Algorithms  (GAs)

Solutions/Individuals = Strings of prefixed length

“Traditional situation”: the values in each allele are discrete and: 

crossover mutation
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... but GAs can work also on vectors of continuous values. 

Genetic Algorithms  (GAs)

In that case, many operators have been introduced.

Interesting: Geometric operators [Moraglio and Poli, 2006]:

Geometric Crossover
Coordinates of the (unique) offspring are the weighted average of the 
corresponding coordinates of the parents (with weighs in [0,1] whose sum is 1). 

this crossover expresses “betweenness”:
the offsrping stands between (in the line joining) the parents

Global optimum

the offspring cannot be worse 
than the worse of the parents
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... but GAs can work also on vectors of continuous values. 

Genetic Algorithms  (GAs)

In that case, many operators have been introduced.

Interesting: Geometric operators [Moraglio and Poli, 2006]:

Geometric Mutation

Ball mutation

Unimodal fitness landscape on 
the CONO problem.
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Genetic Programming  (GP)
An evolutionary algorithm in which solutions/individuals are computer programs.  

Typically (“Lisp-like”) trees.

Example  (Symbolic Regression)

2   4
3 5

10
13H =

Given the set of data:

*

+

x1 x2

x2

A possible individual is:

It represents the program/function/expression: P(x1, x2) = x2 * (x1 + x2)

And one possible fitness could be:

fitness(P) = |P(2,4) – 10| + | P(3,5) – 13|  =

|4 * (2+4) – 10| + |5 * (3+5) – 13| = |24 – 10| + |40 – 13| = 14 + 27 = 41

input target
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GP as a Machine Learning Method

• Known: the correct outputs for a fixed given set of inputs {Ii, Oi}

• Sought: a function belonging to a certain class that interpolates 
those points, i.e., f(Ii)= Oi for any i

• Output vector: the vector of the outputs of f is f(I)=(f(Ii))

• Fitness: a measure on the error on the training set, i.e.,distance
between the output vectors of f and the target output vector 
F(f)=D(f(I),O) (ERROR AS DISTANCE)

We are talking of Supervised Learning.
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What is «Semantics» ? 
[Nguyen at al., 2011], [Moraglio et al., 2012], …

Many definition exist, but in GP the most used one is: 

The vector of outputs of a program on the different training data

Example

2   4
3 5

10
13H =

Given the set of data:

has a semantics qual to:  [P(2,4), P(3,5)] = [24, 40]

*

+

x1 x2

x2

The individual:

That represents function: P(x1, x2) = x2 * (x1 + x2)
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Semantics

Let  X = [𝒙1, 𝒙2, ..., 𝒙n] be the set of input data (fitness cases) 
of a supervised learning problem and 𝒕 = [t1, t2, ..., tn] the 
vector of the respective expected output or target values.

A GP individual (or program) P can be seen as a function 
that, for each input vector 𝒙i returns the scalar value P(𝒙i).

We define semantics of an individual P the vector:

𝒔 P = [P(𝒙1),P(𝒙2), ...,P(𝒙n)]

This is a point in a n-dimensional space
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Semantic Space

Semantic spaceGenotypic space

target

The target is 
also represented 
by a point in the 
semantic space 
and usually it 
does not 
correspond to 
the origin

?
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«Traditional» GP operators

crossover

mutation
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… Preserve syntactic “genetic material”, but  what is their 
effect on semantics? 

«Traditional» GP operators

… Produce offspring by blind syntactic manipulation of 
parent parse trees, regardless of their semantics.
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Objective

Is it possible to define transformations on the syntax of 
individuals that have known effects on their semantics? 
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Syntax Semantics

?

? Ball Mutation



33Leonardo Vanneschi                   Geometric Semantic Genetic Programming

Syntax Semantics

P1

P2

Offspring

?
?

Geometric 
XO
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Let us assume that we are able to find a transformation on the 
syntax of an individual whose effect is ball mutation on the 
semantic space. 

This transformation, if known, would induce a unimodal
fitness landscape on every problem consisting in matching 
input data into known targets (e.g. regressions and 
classifications), 

GP should have a good evolvability on those problems, at least 
on training data (we are mapping the problem into the 
CONO).

The same also holds for transformations on pairs of solutions 
that correspond to GA semantic crossovers.

Impact
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Is it a dream?

Yes... but turning into reality

Even though with a big drawback (discussed later) those 
operators have been defined:

A. Moraglio, K. Krawiec, and C. G. Johnson. 
Geometric semantic genetic programming. 
In C. A. Coello Coello, et al., editors, Parallel Problem Solving 
from Nature, PPSN XII (part 1), volume 7491 of Lecture Notes 
in Computer Science, pages 21–31. Springer, 2012.
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Geometric Semantic Crossover  [Moraglio et al., 2012]

TR = Random function with codomain [0, 1]

TR

TR

T1 T2

TXO      =
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Geometric Semantic Crossover  [Moraglio et al., 2012]

The (only) offspring generated by this crossover has a semantic 
vector that is a linear combination of the semantics of the parents 
with random coefficients included in [0,1] and whose sum is equal to 1. 
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Geometric Semantic Mutation   [Moraglio et al., 2012]

TM =

+

T *

ms -

TR1 TR2

TR1 , TR2 = Random functions
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Each element of the semantic vector of the offspring is a 
“weak” perturbation of the corresponding element in the 
parent’s semantics. 

“Weak” because  (TR1 - TR2) is centered in zero

It’s importance can be tuned by ms.

Geometric Semantic Mutation   [Moraglio et al., 2012]
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Geometric Semantic Mutation   [Moraglio et al., 2012]

It corresponds to ball mutation in the semantic space, so 
the fitness landscape it induces is unimodal (we match 
each problem consisting in matching inputs into targets 
into the CONO problem!).
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Cool !!   But....
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Geometric Semantic Operators

Moraglio et al. show interesting results on a set of benchmarks, but....

XO(T1, T2) = (T1 * TR) + ((1 – TR) * T2) 

At generation 2 (if we use only crossover), all the trees have this shape, so to 
create the next generation:

XO( (T1 * TR1) + ((1 – TR1) * T2), (T3 * TR2) + ((1 – TR2) * T4) ) =

(((T1 * TR1) + ((1 – TR1) * T2)) * TR3) + ((1 – TR3) * ((T3 * TR2) + ((1 –
TR2) * T4)))

Now assume to take two trees of this shape and apply the crossover to 
generate the offspring of generation 3 

And assume to iterate this for hundreds of generations!
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Drawback of Geometric Semantic Operators

These operators, by construction, always produce 
offspring that are larger than their parents, causing a fast 
growth in the size of the individuals (proven in [Moraglio
et al., 2012]

This renders them useless in practice. 

A solution that has been proposed: “simplification” of the 
individuals during the evolution. But….
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Our Contribution

In:  

A New Implementation of Geometric Semantic GP Applied to 
Predicting Pharmacokinetic Parameters. 
L. Vanneschi, M. Castelli, L. Manzoni, S. Silva. 
Accepted for publication in the EuroGP 2013 Proceedings 
Lecture Notes in Computer Science.

We propose a new implementation of Moraglio’s 
geometric semantic operators that is efficient and thus 
allows us to use them (for the first time) on complex real-
life applications!
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The New Implementation 

We create the initial population as in standard GP and we store the trees. 
We create all the random trees that we need to produce the next population.

We store the next population like this.

These are memory references!
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7.34 8.62 9.51 4.07

9.73 4.29 5.26 1.45

2.92 3.76 5.23 6.24

7.28 1.78 3.26 5.74

2.57 4.67 3.22 6.91

2.64 3.28 5.93 4.29

6.94 7.53 8.53 2.65

4.84 3.56 2.76 9.76

4.37 5.94 2.59 1.85

4.67 3.27 2.57 7.47

....... ....... ....... .......

....... ....... ....... .......

....... ....... ....... .......

....... ....... ....... .......

....... ....... ....... .......

Semantics

Semantics in the 
next population

Obtainable 
directly from here

Storing also the 
semantics of each 

individual allows us to 
calculate the fitness 

without evaluating the 
whole expresson!!
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The New Implementation 

Before passing to the next generation:

T2 is not used anymore: it can be deleted from memory !
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The New Implementation 
For producing the next generation:

We eventually simplify removing trees that will never be used).

We create another pool of random trees to produce the next population.

We store the next population in another table of pointers.
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The New Implementation – Comp. Complexity
We keep in memory:

• (a subset of) the initial population

• a pool of random trees

• a table of memory references

maintains a constant size
(but can be simplified)

increases in size at 
each generation (but can 
be simplified)

increases in size at 
each generation (but can 
be simplified)

Cost of evolving a population of n individuals for g generations.

At every generation, we need O(n) space to store the new individuals. Thus, we 
need O(ng) space in total. Since we need to do only O(1) operations for any new 
individual (since the fitness can be computed using the fitness
of the parents), the time complexity is O(ng). 
Thus, we have a linear complexity with respect to population size and number of 
generations.
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Video

(a movie will be shown here)
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Implementation of GSGP

Available for free at:

http://gsgp.sourceforge.net/
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The last step: expression reconstruction

At the end of a run, we have to reconstruct the trees, and those trees 
are huge, but:

• Usually we just need one individual (the best on training), so we 
can do the reconstruction only once.

• We can do it offline, at the end of the run, so that we do not slow 
down the evolution



53Leonardo Vanneschi                   Geometric Semantic Genetic Programming

PART II

Real-Life Applications
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Prediction of Pharmacokinetic Parameters

L. Vanneschi. Improving genetic programming for the prediction 
of pharmacokinetic parameters. Memetic Computing, 6(4):255–
262, 2014

L. Vanneschi, S. Silva, M. Castelli, and L. Manzoni. Geometric 
semantic genetic programming for real life applications. In R. 
Riolo, et al., editors, Genetic Programming Theory and Practice 
XI, Genetic and Evolutionary Computation, pages 191–209. 
Springer New York, 2014
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Drug Discovery

Drug discovery is the process by which new candidate 
medications are discovered and commercialized

It is an expensive, slow and risky business. 

A recent analysis suggests that it costs on average
more than $1 billion to launch a potentially technically
successful drug, and it takes on average 12.5 years.

(source:  http://emedicine.medscape.com/article/169814-overview)
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The case of Troglitazone

• Approved in 1997 as an antidiabetic drug, and seemed set to 
become a global “bestseller”

• In 3 years it caused more than 90 verified cases of hepatotoxicity 
(with consequent serious liver injuries), among which 63 liver-
failure deaths

• Withdrawn from the market in 2000 by the Food and Drug 
Administration (FDA)

• It is estimated that this withdrawal costed approximately  
$136 million

(sources: http://emedicine.medscape.com/article/169814-overview  and  http://84.19.28.94/troglitazone-story)
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The case of Troglitazone is not isolated 

Since 2000, more than 900 drugs have been reported to cause 
liver injury, and drugs account for approximately 40% of all 
instances of fulminant hepatic failure.

Why do this happens?

Because predicting drugs toxity is:

• Difficult

• (Very!) Expansive

(source:  http://emedicine.medscape.com/article/169814-overview)
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How the Toxicity of a Potential New Drug is Measured

test animals

Feed all of them slowly increasing 
amounts of drug  

Until 50% of them die

The total amount of drug fed is 
called Median Oral Lethal Dose 
(LD50) and it is nowadays one of 
the most accepted measures of 
toxicity
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Problems with Toxicity Measurements
The sample of cavies has to be statistically significant and there is an 
extremely large variance in the amount of drug needed to kill a test 
animal, so many cavies are needed in order to obtain significant 
results.

Toxicity is only one important (pharmacokinetic) parameter that has 
to be known before commercializing a drug!

Furthermore…

In this presentation:

• Human oral bioavailability

• Plasma protein binding level
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Oral Bioavailability  (%F)

• Drugs have to be absorbed from the gut wall and to enter into systemic 
circulation in the portal vein.

• Carried by the blood flux, molecules arrive in the liver, where there are some
biochemical processes that try to demolish them. 

Oral Bioavailability = The percentage of molecules initially submitted that 
exit the liver and enter  the blood circulation.
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Plasma Protein Binding Levels (%PPB)

The percentage of the initial drug dose which binds plasma 
proteins. 

This measure is fundamental, because blood circulation is the 
major vehicle of drug distribution into human body
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Drug Discovery Process

• What does the drug have to do?
• Which organs does it have to
influence?

• What does the drug have NOT to do?
• Which organs does it have NOT to
influence?
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Drug Discovery Process

• Decide the desired value of some
pharmacokinetic parameters

• Find the set of molecules that
optimize them!

Predicting the values of 
pharmacokinetic parameters 
is crucial for the 
success/failure of the drug 
discovery process!! 
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Why are these parameters important?
Main reasons for failure in drug development:

• clinical safety (black)
• efficacy (red)
• formulation (green) 
• bioavailability (blue) 

• commercial (yellow)
• toxicology (grey)
• cost of goods (purple)
• others (white)

Bound
to %PPB !

Bound
to LD50 !

Bound
to %F !
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Q.S.A.R. Approach

molecular descriptors
goal (or target - the value of the 

pharmacokinetic parameter to estimate)

drugs

x11 x12 x13 ...  x1M
x21 x22 x23 ...  x2M
...
xN1 xN2 xN3 ..., xNM

y1
y2
...
yN

H =

We look for a function f such that:

� i: 1 ≤ i ≤ N   f(xi1, xi2, xi3, ..., xiM) = yi

... and it has to have a high generalization ability !
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Bioavailability Results



67Leonardo Vanneschi                   Geometric Semantic Genetic Programming

Plasma Protein Binding Level results
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Toxicity Results
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Why this good results on test data?

The geometrical properties of Moraglio’s operators hold independetly of 
the dataset on which individuals are evaluated !
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Controlling Overfitting

Even though geometric semantic operators do not
guarantee an improvement on test data at each 
application, at least...

... they guarantee that the eventual worsening on test data 
is limited, and limited of a well defined quantity:

• For crossover:
the fitness (on test data) of the worst parent 

• For mutation:
the mutation step ms
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Prediction of the Unified Parkinson’s 
Disease Rating Scale Assessment

M. Castelli, L. Vanneschi, and S. Silva. Prediction of the unified 
Parkinson’s disease rating scale assessment using a genetic 
programming system with geometric semantic genetic operators. 
Expert Systems with Applications, 41(10):4608 – 4616, 2014
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The Unified Parkinson’s Disease Rating Scale (UPDRS) is a scale that 
was developed as an effort to incorporate elements from existing 
scales to provide a comprehensive, efficient and flexible way of 
measuring and monitoring Parkinson’s Disease (PD)-related disability 
and impairment.

For many persons affected by PD, the necessary specialized
medical examinations to estimate the severity of their symptoms
are difficult and invasive and they have to be performed by trained
medical staff. This highlights the need of reliable and accurate 
computational techniques that allow estimating the UPDRS
automatically and effectively.

Unified Parkinson’s Disease Rating Scale



73Leonardo Vanneschi                   Geometric Semantic Genetic Programming

• Total-UPDRS: dataset using as target the values of the severity of the 
general PD symptoms, taking into account:

• Mentation, Behavior and Mood.
• Activities of daily living.
• Motor.

It reflects the presence and severity of symptoms, expressing it in a 
range from 0 to 176, with 0 representing a healthy state and 176 total 
disability.

• Motor-UPDRS: dataset using as target the values of the severity of the 
motor symptoms. 
The motor section of the UPDRS encompasses tasks such as speech, 
facial expression, tremor and rigidity and expresses the severity of the 
related symptoms in a range from 0 to 108, where 0 represents a 
symptom free state and 108 denotes severe motor impairment.

Datasets



74Leonardo Vanneschi                   Geometric Semantic Genetic Programming

Feature

Features in the considered dataset. MDVP stands for (Kay Pentax) Multidimensional Voice Program
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Parkinson’s Desease Results
Motor Dataset
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Parkinson’s Desease Results
Total Dataset
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Comparison with Other ML Methods
Motor Dataset

LIN -> regression (Weisberg, 2005) 
SQ -> Least square regression (Seber & Wild, 2003) 
RBF -> Radial Basis Function network (Haykin, 1999) 
ISO -> Isotonic regression (Hoffmann, 2009) 
SVM-1 -> SVM polynomial kernel of degree 1 (lkopf & Smola, 2002) 
SVM-2 -> SVM polynomial kernel of degree 2 (lkopf & Smola, 2002)
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Statistical Comparison

As a first step, the Kolmogorov–Smirnov test has shown that the data 
are not normally distributed. Then, the Wilcoxon rank-sum test for 
pairwise data comparison has been used under the alternative 
hypothesis that the samples do not have equal medians.
Used significance level was α = 0.01.
Bonferroni correction was used.
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Prediction of high performance 
concrete strength

M. Castelli, L. Vanneschi, and S. Silva. Prediction of high 
performance concrete strength using genetic programming with 
geometric semantic genetic operators. Expert Systems with 
Applications, 40(17):6856 – 6862, 2013.
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Concrete is the most-used man-made product in the 
world.

Concrete is a composite construction material made 
primarily with aggregate, cement, and water. 

Several way of mixing these ingredients, and several 
ways of establishing that the concrete will have the 
required performance in different situations.

Reliable and accurate techniques that allow modelling 
the behaviour of concrete materials are in demand.

The Problem
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Data

The dataset consist in 1028 instances, each of them described by 8 
variables:

Dataset from:
Yeh, I.-C. Modeling of strength of high-performance concrete using 
artificial neural networks. Cement and Concrete Research, 28(12), 
1797–1808. 1998.
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Results
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Comparison with other ML Methods

Concrete Strength prediction:
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Prediction of the Relative Position of 
Computer Tomography (CT) Slices

M. Castelli, L. Trujillo, L. Vanneschi, and A. Popovic. Prediction of 
relative position of CT slices using a computational intelligence 
system. Applied Soft Computing. Volume 6. Pages 537-542. 2016. 
doi:http://dx.doi.org/10.1016/j.asoc.2015.09.021
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The Problem
Scanning large parts of a patient's body with computerized 
tomography (CT) is common practice in radiology. 

The amount of image data resulting from a full body scan varies 
between 40MB to more than 1GB, which has to be stored in a medical 
picture archiving and communication system (PACS).

A clinician often needs to compare different scans of the same body 
region for differential diagnoses or needs to compare disease patterns 
in the same body region between similar patients.

When searching for similar disease patterns in a remote PACS it is 
impractical to load complete volume sets and then manually navigate 
to the relevant body regions. Instead, transferring only the most similar 
body parts is more reasonable, secure and ecient. Nonetheless, in 
both scenarios it is necessary to determine the relative position of the 
given CT slice within the body.
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Integration of GSGP with Local Search

GSGP’s optimization is very effective, but quite slow.

We recently proposed a GSM operator revisited:

𝑇𝑀 = 𝛼0 + 𝛼1 ⋅ 𝑇 + 𝛼2 ⋅ (𝑇𝑅1 + 𝑇𝑅2)

where 𝛼𝑖 ∈ ℜ and𝛼2 corresponds to the original mutation 
step ms. Given a training set of n fitness cases, this 
defines system with n linear equations and three 
unknowns (𝛼0, 𝛼1, 𝛼2).
This is an overdetermined multivariate linear fitting 
problem, which can be solved using Singular Value 
Decomposition (SVD).
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• GSGP

• GSGP-LS (using GSM-LS)

• HYBRID
• Run GSGP-LS for the first M generations/ run 

standard GSGP afterwards (Best results found 
with M=10)

New Algorithm Variants



89Leonardo Vanneschi                   Geometric Semantic Genetic Programming

Data 

The data was retrieved from 53500 CT images taken from 74 different 
patients (43 male, 31 female).

Each CT image is described by 385 features. The first feature is the 
ID of the patient; features 2 – 241 are related to bone structures; 
features 242 - 385 are related to air inclusions. The last feature is the 
target variable that is the relative location of the image on the axial 
axis.

Values are in the range [0; 180] where 0 denotes the top of the head 
and 180 the soles of the feet.
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Data 
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Comparison with Other Methods
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Forecasting of Energy Consumption

M. Castelli, L. Vanneschi, and M. De Felice. Forecasting short-term 
electricity consumption using a semantics-based genetic 
programming framework: The south Italy case. Energy Economics, 
47:37 – 41, 2015

M. Castelli, L. Trujillo, and L. Vanneschi. Energy consumption 
forecasting using semantic based genetic programming with local 
search optimizer. Computational Intelligence and Neuroscience, 
Volume 57, 2015. Article ID 971908. 
http://dx.doi.org/10.1155/2015/971908.

M. Castelli, L. Trujillo, L. Vanneschi, and A. Popovic. Prediction of 
energy performance of residential buildings: A genetic programming 
approach. Energy and Buildings, 102:67 – 74, 2015.

http://dx.doi.org/10.1155/2015/971908
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The aim of this forecasting task is to predict the energy 
consumption at day 𝑡, providing information until day 𝑡−1 
(one-day ahead forecasting) using the past samples of 
the load and weather information. 

The Problem
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Data

Historical energy consumption data and weather information in Italy 
in the years between 1999 and 2010 have been used to test the 
performance of the proposed system.

Data include temperatures, pressure values, wind speed, and other 
weather related information. 

Data from 1999 to 2006 have been used during the training phase, 
while the remaining available data (i.e., from 2006 to 2010) have 
been used to validate the model on unseen data and hence to 
assess the quality of the forecasting.
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Data Provider

TERNA S.p.A. (Rete Elettrica Nazionale) is an Italian electricity 
transmission system operator based in Rome, Italy. 

With 63,500 kilometres of power lines or around 98% of the Italian 
high-voltage power transmission grid, TERNA is the first 
independent electricity transmission grid operator in Europe and the 
sixth in world based on the size of its electrical grid. 

TERNA is the owner of the Italian transmission grid and responsible 
for energy transmission and dispatching.
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Results
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Comparison with Other ML Methods
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PART III

Conclusions
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Summary of the contributions

• An efficient implementation of geometric semantic 
operators, that has allowed us to use them on real-life 
applications. 

• Excellent results on the studied applications.

• New insights about the generalization ability of 
geometric semantic operators (without the novel 
implementation that allowed us to use geometric 
semantic GP on these complex real-life problems, this 
interesting property would probably remain unnoticed). 
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Open issues

The reconstruction of the expression of the best individual, 
even though we do it only once and after the termination of 
the run, is still an issue:

Individuals after hundreds of generations get so huge that it 
may be impossible to reconstruct their entire expression 
(even though it is possible to get some information about it, 
such as the features or primitives it uses...).

Models generated by geometric semantic GP are black (or 
at least “dark gray” - ) boxes!

We are working on this!
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All this would not exist without...

Sara Silva
Faculdade de Ciências
Universidade de Lisboa

Mauro Castelli
NOVA IMS

Universidade Nova de Lisboa
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Thank you!
lvanneschi@novaims.unl.pt


