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• The need of machine learning

• Evolutionary computation for supervised Learning –
New case studies.

• Evolutionary Reinforcement Learning
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Outlines



• Three key components of machine learning:
– Data/model representation
– Evaluation
– Training algorithm

• Most modern machine learning problems are essentially
searching for the model that is optimal with respect to
some objective function (e.g., generalization).

• Optimization algorithms thus play a crucial role in
machine learning.
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• Many machine learning tasks, when formulated as an
optimization problem, cannot be well solved by traditional
(e.g., convex) optimization techniques.

Plan A: Approximate the original (non-convex) optimization problem with
a convex one.

Plan B: Seek an approximate solution to the original problem with
heuristic methods, e.g., Evolutionary algorithms.
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EAs have been applied to a large variety of learning
problems in the past decades.

• Data representation
– Feature selection
– Feature extraction
– Dimensionality Reduction

• Model training
– Decision tree
– Neural networks
– Rule-based systems
– Clustering

• Hyper-parameter tuning
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Machine learning has its own characteristics that
calls for specialized EAs.

• Huge problem size (i.e., the search space).

• Noisy fitness evaluation (since the generalization
cannot be precisely measured)

• Expensive fitness evaluation

• Theoretical guarantee is more preferred than in
other areas.
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• Subset selection: select a subset of size ! from a total
set of " variables for optimizing some criterion.

• NP-hard in general [Natarajan,1995; Davis et al., 1997]

and arises in many learning problems:

– Feature Selection

– Sparse Learning

– Compressed Sensing
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• Greedy algorithms [Gilbert et al., SODA’03; Tropp, TIT’04]
– Process: iteratively select or abandon one variable that makes

the criterion currently optimized
– Weakness: get stuck in local optima due to the greedy behavior

88

Case Study (1)

Iteration k:

Iteration 1:



• Convex relaxation methods [Tibshirani, JRSSB’96; Zou &
Hastie, JRSSB’05]
– Process: replace the set size constraint with convex constraints,

then find the optimal solutions to the relaxed problem.
– Weakness: the optimal solution of the relaxed problem may be

distant to the true optimum.
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non-convex

convex



• There have been numerous EAs for subset selection,
while rigorous theoretical guarantee is few.

• Subset Selection as a bi-objective optimization problem

1010

Case Study (1)

POSS (Pareto Optimization for Subset Selection)

The basic idea: 
constrained

bi-objective



• Chaoqian paper
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Case Study (1)

Output: select the best feasible 
solution



• Sparse regression is to find a sparse approximation

solution to the regression problem.

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset Selection by Pareto Optimization.In: Advances in Neural Information

Processing Systems 28 (NIPS'15), Montreal, Canada, 2015, pp.1765-1773.
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strongest
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the best 

previous 

theoretical 

guarantee 

POSS can do at least as well as previous methods.

POSS can do strictly better than previous methods.



• POSS for Sparse Regression: Summary
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Experiment

Theory

the number 

of iterations

the best known 

polynomial-time 

approximation bound

[Das & Kempe, ICML’11]

significantly better than all the compared methods on all data sets 
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Case Study (2)

current population

one new solution

initialization

one archived solution

reproduction

evaluation

selection

new population

updating

POSS

generate only one new solution in one iteration
sequential

A sequential algorithm that cannot be readily parallelized 

restrict the application to large-scale real-world problems



Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Parallel Pareto Optimization for Subset Selection. In:

Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16), New York, NY, 2016, pp.1939-

1945. 1717

Case Study (2)

current population

initialization

one archived solution

selection

new population

updating

PPOSS

one new solutionone new solution

reproduction reproduction

evaluation evaluation

generate multiple new solutions
in one iteration

parallelizable

Theoretical 

guarantee 

still holds?



• Theoretical results
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Case Study (2)

• When the number of processors is less than the number of variables, the 

number of iterations can be reduced linearly w.r.t. the number of processors 

• With increasing number of processors, the number of iterations can be 

continuously reduced, eventually to a constant

The best previous known bound

• submodular [Nemhauser & Wolsey, MOR’78]

• sparse regression (non-submodular) [Das & Kempe, ICML’11]

the same 

approximation bound
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Sparse 

regression the larger 

the better

data set
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the asynchronous version of PPOSS the best previous algorithm [Das & Kempe, ICML’11]



Case Study (3)

• Ensemble Pruning is also a subset selection problem.

10

[Martinez-Munoz and Suarez, ICML’06]

Model 1 Model 2 Model n× × × × × ×

Model Selection

Final Model

Model Combiner

Model 1 Model 2 Model n× × × × × ×

Ensemble pruning: select a 
subset of learners to combine
• reduce storage & improve efficiency
• better performance than the 

complete ensemble



• PEP: Pareto Ensemble Pruning

2424

Case Study (3)

Better than any other method on more than 60% (12.5/20) 
data sets, and never significantly worse



Case Study (3)

16

Better than any other method on more than 80% (16/20) 
data sets; never significantly worse, except two losses

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Pareto Ensemble Pruning. In: Proceedings of the 29th AAAI Conference on

Artificial Intelligence (AAAI'15), Austin, TX, 2015, pp.2935-2941.



• Many real-world classification problems are cost-sensitive.

• The optimal classifier for a binary classification problem

• A good classifier could be used via cost-sensitive learning. 

2626

hopt = argmin
h∈Ω

 C10 ⋅FNR(h)+C01 ⋅FPR(h)      (1)

Cost matrix
Predicted + Predicted -

+ 0 C10

- C01 0

Confusion matrix
Predicted + Predicted -

+ TPR FNR

- FPR TNR

Case Study (4)



• However, costs are often subject to great uncertainty.
– Very difficult to specify the exact cost values before training.
– The costs may change over time.

• Alternative: seeking a group of classifiers that maximize the 
the Receiver Operating Characteristic (ROC) convex hull. 

“The optimal classifier for any cost values must be a vertex or on the edge of the convex 
hull of all (achievable) classifiers in the ROC space.” [Provost and Fawcett, 2001]  
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• New Learning Target: To obtain a set of classifiers
such that their ROCCH is maximized.

• This is a set-oriented optimization problem can could 
hardly be solved with existing approaches.

• Evolutionary Algorithms provides a natural way to 
search for a set (population) of classifiers. 

2828
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• Multi-objective evolutionary algorithms (MOEAs) are off-the-shelf 
tools for this problem 
– Maximize TPR
– Minimize FPR

• Direct application of an MOEA is OK, while not ideal.
– A Pareto optimal solution is not necessarily a vertex on the convex hull.
– Many-to-one mapping between the hypothesis and ROC spaces.

Case Study (4)



• Approach: Convex Hull-based MOEA (CH-MOEA)

• Features of CH-MOEA:
– Convex hull-based sorting
– Redundancy elimination

3030

Based on 
Convex hull Area-based 

selection

Case Study (4)



• Convex Hull-based Sorting
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• Redundancy Elimination

3232
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• CH-MOEA can be combined with any base learners to build 
either homogeneous and heterogeneous ensembles
– Neural Network
– Decision Tree
– SVM
– …

• Different types of base learners need different search operators.

• We implemented CH-MOEA with Genetic Programming (CH-
MOGP). 

3333

P. Wang, M. Emmerich, R. Li, K. Tang, T. Baeck and X. Yao, “Convex Hull-Based Multi-objective Genetic Programming for
Maximizing Receiver Operating Characteristic Performance,” IEEE Transactions on Evolutionary Computation, 19(2): 188-
200, April 2015.
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• Empirical studies
– Which MOEA framework performs the best for our problem?
– Is CH-MOGP competitive in comparison to non-evolutionary methods?

• Compared methods
– NSGA-II
– MOEA/D
– SMS-EMOA (an indicator based MOEA)
– C4.5
– PRIE ([Fawcett, 2008], a state-of-the-art heuristic approach for ROCCH 

maximization)
– Naïve Bayes

3434

All evolutionary approaches adopt the same 
base learner and reproduction operator 

Case Study (4)



• CH-MOGP outperformed state-of-the-art MOEAs

3535
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CH-MOEA outperformed other state-of-the-art methods 
in terms of solution quality

Case Study (4)





What is reinforcement learning

reward

learning a strategy to interact with the environment for 
maximizing the long-term reward

Agent Environment

action/decision

reward
state

Agent: Policy: ⇡ : S ⇥A ! R,
X

a2A
⇡(a|s) = 1

Policy (deterministic): ⇡ : S ! A

Agent’s goal: learn a policy to maximize 
long-term total reward 

X1

t=1
�trtdiscounted:

T-step:
XT

t=1
rt



Compare RL with SL

supervised learning reinforcement learning

environment

data
(x,y)
(x,y)
(x,y)
...

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

algorithm algorithm

environment

model model

data
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)
(s,a,s,r,a,s,r...)

...

data
s,a,r,s,a,r,s,  
s,a,r,s,a,r,s,
s,a,r,s,a,r,s,

...

SL searches for a model
RL searches for the right output and a model



Hardness of RL

general binary space problem

()

solving the optimal policy is NP-hard!

max

x2{0,1}n
f(x)

(0) (1)

(00) (01) (10) (11)

(000) (010)(001) (011) (100) (110)(101) (111)

r=0

r=0

r=f(x)



Value-based methods

sunny

s

c

r

s

c

r

s

c

r

...

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

Q⇡(s, a) =
X

s0

P (s0|s, a)
�
R(s, a, s0) + V ⇡(s0)

�

dynamic programming



Value-based methods

overall idea:
how is the current policy
improve the current policy

policy evaluation
policy improvement

policy evaluation: backward calculation

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)
�
R(s, a, s0) + �V ⇡(s0)

�

policy improvement:

V (s) max

a
Q⇡

(s, a)

from the Bellman optimality equation

policy iteration:



Value-based methods

policy degradation in value-based methods

1 2

1/3 2/3
2/31/3

2/32/3
1/3

1/3
r(1)=0 r(2)=1
ɸ(1)=2 ɸ(2)=1

optimal policy: red
V*(2) > V*(1) > 0

as value function based method minimizes kV̂ � V ⇤k
results in w > 0

sub-optimal policy,  better value ≠ better policy

let V̂ (s) = w�(s), to ensure V̂ (2) > V̂ (1), w < 0

[Bartlett. An Introduction to Reinforcement Learning Theory: Value Function Methods.  Advanced Lectures on Machine Learning, LNAI 2600]



Policy search

Gibbs policy (logistic regression)

Gaussian policy (continuous !)

⇡✓(i|s) =
exp(✓>i �(s))P
j exp(✓

>
j �(s))

⇡✓(a|s) =
1p
2⇡�2

exp

✓
� (✓>s� a)2

�2

◆

⇡(a|s) = P (a|s, ✓)

parameterized policy



Policy search

episodic environments: over all trajectories

where

is the probability of generating the trajectory

J(✓) =

Z

Tra
p✓(⌧)R(⌧) d⌧

p✓(⌧) = p(s0)
TY

i=1

p(si|ai, si�1)⇡✓(ai|si�1)

continuing environments: over stationary distribution

d⇡✓ is the stationary distribution of the process

J(✓) =

Z

S
d⇡✓ (s)

Z

A
⇡✓(a|s)R(s, a) ds da

direct objective functions



Policy search by gradient: policy gradient

J(✓) =

Z

Tra
p✓(⌧)R(⌧) d⌧

logarithm trick r✓p✓ = p✓r✓ log p✓

p✓(⌧) = p(s0)
TY

i=1

p(si|ai, si�1)⇡✓(ai|si�1)as

r✓ log p✓(⌧) =
TX

i=1

r✓ log ⇡✓(ai|si�1) + const

use samples to estimate the gradient (unbiased estimation) 

gradient: r✓J(✓) =

Z

Tra
p✓(⌧)r✓ log p✓(⌧)R(⌧) d⌧

= E[

TX

i=1

r✓ log ⇡✓(ai|si)R(si, ai)]



Policy search v.s. value-based methods

Policy search advantages:
effective in high-dimensional and continuous action space
learn stochastic policies directly
avoid policy degradation

disadvantages:
converge only to a local optimum
high variance



Policy gradient: variance control

actor-critic

Learn policy (actor) and Q-value (critic) simultaneously

r✓J(✓) ⇡ E[r✓ log ⇡✓(a|s)Qw(s, a)]

if w is a minimizer of E[(Q⇡✓
(s, a)�Qw(s, a))

2
]

baseline
r✓J(✓) = E[r✓ log ⇡✓(a|s)(Q⇡

(s, a)� b(s))]

A⇡(s, a) = Q⇡(s, a)� V ⇡(s)advantage function:

r✓J(✓) = E[r✓ log ⇡✓(a|s)A⇡
(s, a)]

learn policy, Q and V simultaneously



Policy gradient: other gradients
nature policy gradient

functional policy gradient

parameter-level exploration

[Kakade. A Natural Policy Gradient. NIPS'01]

[Yu et al. Boosting nonparametric policies. AAMAS'16]

[Sehnke et al.  Parameter-exploring policy gradients. Neural Networks’10]✓ ⇠ N

In NPPG, A policy ⇡(s, a) is represented as g( (s, a))
with some potential function  . For discrete action spaces, g
can be the Gibbs Sampling function (i.e., the logistic regres-

sion function), ⇡
 

(a|s) = exp( (s,a))P
a0 exp( (s,a

0
))

, and for continu-

ous action spaces, g can be the Gaussian function with pa-

rameter �, ⇡
 

(a|s) = 1p
2⇡�

2
exp

⇣
� ( (s)�a)

2

�

2

⌘
. The poten-

tial function  is an additive model  =
P

T

t=1

h
t

, where the
component function h

t

is to be trained iteratively. NPPG
employs the gradient of Eq.(2) directly, except that the gra-
dient is with respect to the potential function,

r
 

⇢(⇡
 

)=

Z

X
d⇡ (s)

X

a2A

Q⇡ (s, a)r
 

⇡
 

(a|s)ds.

Given the current potential function  
t

=
P

t

i=1

h
t

, the
function can be updated as

 
t+1

=  
t

+ ⌘
t

r
 

⇢(⇡
 t).

However, di↵erent with the gradient of linear vectors, the
gradient in a function space r

 

⇢(⇡
 t) is also a function

but can not be explicitly expressed. We can only know the
gradient value on the samples. Then the point-wise esti-
mation [12] is used to approximate the gradient function
via regression learning algorithms. Given a set of state-
action samples (which can be extract from the trajectories),
the gradient value on each sample (state s and action a) is
calculated as grad(s, a) = Q⇡(s, a)r

 (s,a)

⇡
 

(a|s). It then
constructs a set of examples with features (s, a) and label
grad(s, a), and derives a model h

t

by regression learning
from this set. Now the update rule is by

 
t+1

=  
t

+ ⌘
t

h
t

.

Note this step is a standard supervised regression task, and
thus many well-established learning algorithms with strong
generalization ability can be used here, which results an
adaptively nonlinear model.

3. POLICYBOOST

3.1 Functional Gradient
Following REINFORCE [38], on a sample of m trajecto-

ries S, the unbiased gradient of the expected total reward is
r⇢

S

(⇡) = 1

m

P
m

i=1

r log p⇡(⌧
i

)R(⌧
i

). Considering the same
action functions of NPPG, a policy is formed from a poten-
tial function  . For a state-action pair (s, a) in a trajectory
⌧ with the next state s0, the functional gradient with respect
to  (s, a) is

r
 (s,a)

⇢(⇡
 

) =
1
m

R(⌧ )r
 (s,a)

log p⇡ (⌧ )

=
1
m

p(s0|s, a)
p⇡ (s0|s)R(⌧ )r

 (s,a)

⇡
 

(a | s)

=
1
m

p(s0|s, a)P
n

t=1

p(s0|s, a
t

)⇡(s, a
t

)
R(⌧ )r

 (s,a)

⇡
 

(a | s).

Then for discrete action space, we have

r
 (s,a)

⇡(a | s) = ⇡
 

(a | s)(1� ⇡
 

(a | s)) (3)

and for continuous action space,

r
 (s,a)

⇡(a | s) = 2⇡
 

(a | s)(a� (s))/�2. (4)

Since the functional gradient results in a function, of which
the value can only be calculated on observed state-action
pairs, we need to train a least square model h

t

to fit the gra-
dient value on the samples, and update the potential func-
tion as  

t+1

=  
t

+ ⌘
t

h
t

with a small positive constant ⌘.
This results in the update of the policy.

3.2 On-Sample Convergence
To disclose how the functional gradient leads the policy,

we consider discrete actions, i.e., ⇡
 

(a|s) = exp( (s,a))P
a0 exp( (s,a

0
))

,

and study its convergence on the training samples.
Let  

0

be a constant function (e.g. always outputs 0),
and recall  

t+1

=  
t

+ ⌘r
 

⇢
S

(⇡
 

). For simplicity, when
the state s is clear, we make some notations: let  

t,k

be
 

t

(s, a
k

), let ↵t

k

= ⇡
 t(ak

|s) for the action a
k

, �
kj

=
p(s

j

|s, a
k

), �
j

= p⇡ (s
j

|s) and c
kj

=
P

m

i=1

1
(sj2⌧i)

�
kj

R(⌧
i

)
where 1

expression

is the indicator function that is 1 when
expression is true and 0 otherwise. Denote k⇤ the index
of the observed best action of the state s, such that 8k 6=
k⇤ 8j : c

k

⇤
j

� c
kj

.
The functional gradient of total reward on S at a state-

action pair (s, a
k

) can be rewritten as

r
 t,k⇢S(⇡ )

=
1
m

mX

i=1

lX

j=1

1
(sj2⌧i)

p(s
j

|s, a
k

)
p⇡ (s

j

|s) R(⌧
i

)r
 t,k⇡ (ak
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=
1
m

mX
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1
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�
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R(⌧
i

)
�
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↵
k
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k
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=
1
m

↵
k

(1� ↵
k

)
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mX
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1(s
j

2 ⌧

i

)
�
kj

R(⌧
i

)
�
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=
1
m

↵
k
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k

)
lX
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c
kj

�
j

We prove below that functional gradient converges to the
observed best action. Denote � = min

k 6=k

⇤
P

l

j=1

c
k

⇤
j

� c
kj

be the reward margin, which will e↵ect the convergence rate.

Lemma 1
For an observed state s, let a

k

⇤
be the observed best action,

it holds that

r
 t,k⇤ ⇢S(⇡ t)�r

 t,k⇢S(⇡ t) �
1
m

↵t

k

⇤(1� ↵t

k

⇤)�.

Proof. We first need to prove ↵t

k

⇤ � ↵t

k

for all t and k 6= k⇤.
The proof is by induction. When t = 0, since  

0,ak is a
constant for all k, ↵0

k

⇤ = ↵0

k

for all k.
Then inductively assume that ↵t

k

⇤ � ↵t

k

for all k 6= k⇤.
From the inductive assumption we have that, for all k 6= k⇤,

 
t,k

⇤ �  
t,k
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k

=
exp( 

t
k)Pn

i=1 exp( 

t
i)
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k

⇤(1 � ↵t

k

⇤) �
↵t

k

(1� ↵t

k

) since
P

n

k=1

↵t
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= 1. Therefore, we have that
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)
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c
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generalization ability can be used here, which results an
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Since the functional gradient results in a function, of which
the value can only be calculated on observed state-action
pairs, we need to train a least square model h

t

to fit the gra-
dient value on the samples, and update the potential func-
tion as  
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with a small positive constant ⌘.
This results in the update of the policy.

3.2 On-Sample Convergence
To disclose how the functional gradient leads the policy,
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We prove below that functional gradient converges to the
observed best action. Denote � = min
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Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Natural Policy Gradient

Natural Policy Gradient

The natural policy gradient is parametrisation independent

It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

rnat
✓ ⇡✓(s, a) = G

�1
✓ r✓⇡✓(s, a)

where G✓ is the Fisher information matrix

G✓ = E⇡✓

h
r✓ log ⇡✓(s, a)r✓ log ⇡✓(s, a)

T
i

asynchronous gradient update
[Mnih et al.  Asynchronous Methods for Deep Reinforcement Learning . ICML’16]



Optimization difficulty
the non-convexity

too many local minima
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EARL - EA for RL

⇡(s) =

Q(s, a) =

value-function representation

policy representation
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Issue: low-efficiency

1. NN parameters -> NN structure
2. Parameters -> dynamic programming

Does not utilize problem structure

Whiteson and Stone

will effectively evolve value functions instead of action selectors. Hence, the outputs are
no longer arbitrary values; they represent the long-term discounted values of the associated
state-action pairs and are used, not just to select the most desirable action, but to update
the estimates of other state-action pairs.

Algorithm 3 summarizes the resulting NEAT+Q method. Note that this algorithm is
identical to Algorithm 2, except for the delineated section containing lines 13–16. Each
time the agent takes an action, the network is backpropagated towards Q-learning targets
(line 16) and ϵ-greedy selection occurs just as in Algorithm 1 (lines 13–14). If α and ϵtd are
set to zero, this method degenerates to regular NEAT.

Algorithm 3 neat+q(S, A, c, p, mn, ml, g, e, α, γ, λ, ϵtd)

1: // S: set of all states, A: set of all actions, c: output scale, p: population size
2: // mn: node mutation rate, ml: link mutation rate, g: number of generations
3: // e: number of episodes per generation, α: learning rate, γ: discount factor
4: // λ: eligibility decay rate, ϵtd: exploration rate
5:

6: P []← init-population(S, A, p) // create new population P with random networks
7: for i← 1 to g do

8: for j ← 1 to e do

9: N, s, s′ ← random(P []), null, init-state(S) // select a network randomly
10: repeat

11: Q[] ← c× eval-net(N, s′) // compute value estimates for current state
12:

13: with-prob(ϵtd) a′ ← random(A) // select random exploratory action
14: else a′ ← argmaxkQ[k] // or select greedy action
15: if s ̸= null then

16: backprop(N, s, a, (r + γmaxkQ[k])/c, α, γ, λ) // adjust weights toward target
17:

18: s, a← s′, a′

19: r, s′ ← take-action(a′) // take action and transition to new state
20: N.fitness← N.fitness + r // update total reward accrued by N
21: until terminal-state?(s)
22: N.episodes← N.episodes + 1 // update total number of episodes for N
23: P ′[]← new array of size p // new array will store next generation
24: for j ← 1 to p do

25: P ′[j]← breed-net(P []) // make a new network based on fit parents in P
26: with-probability mn: add-node-mutation(P ′[j]) // add a node to new network
27: with-probability ml: add-link-mutation(P ′[j]) // add a link to new network
28: P []← P ′[]

NEAT+Q combines the power of TD methods with the ability of NEAT to learn effective
representations. Traditional neural network function approximators put all their eggs in one
basket by relying on a single manually designed network to represent the value function.
NEAT+Q, by contrast, explores the space of such networks to increase the chance of finding
a representation that will perform well.
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generations

evaluation 
with TD

reproduction
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Some comparison

Freeway Asterix
Sarsa(λ)-BASS 0 402
Sarsa(λ)-DISCO 0 301
Sarsa(λ)-RAM 0 545
Random 0 156
HyperNEAT-GGP (Average) 27.4 870
HyperNEAT-GGP (Best) 29 1000

Table 1: Game scores obtained in the Freeway and As-
terix games. HyperNEAT-GGP substantially outperforms
Sarsa(λ) on both Freeway and Asterix. The last two lines
report the average and best champion’s score at generation
250.

7.2 Asterix

Figure 6: HyperNEAT-GGP learning performance on the
Asterix game. The average fitness of the population along
with the champion at each generation in the Asterix game.
Error bars represent standard deviation. Fitness of an in-
dividual corresponds exactly to their game score. As the
figure shows, policies are continually improved throughout
the course of the 250 generations.

In Asterix, the player controls a unit called Asterix with
the objective of collecting magic potions and avoiding lyres.
Average fitness of the population and the champion fitness
throughout the learning process can be seen in Fig. 6. Re-
sults for Asterix were averaged across five runs of HyperNEAT-
GGP evolution. Table 1 contrasts our approach with pre-
vious results. The results for Asterix are qualitatively dif-
ferent from Freeway in a number of ways: First, random
exploration obtains non-zero reward in Asterix as Asterix in-
advertently collects magic potions. The Sarsa(λ) agents can
bootstrap from this information and learn to become statis-
tically better than random. Additionally, champions from
HyperNEAT evolution start at close to random performance
(starting average champion fitness = 80) and improve their
performance to the same level as Sarsa(λ) within 50 gener-
ations. Finally, the learning process steadily improves the
fitness through the entirety of 250 generations. This steady
improvement demonstrates the power of using CPPNs at
representing good policies for this game.
Results show excellent performance by HyperNEAT-GGP

on the Asterix and Freeway games. Informal comparisons
with agents controlled by the authors of this paper indicate
that HyperNEAT-GGP achieves scores on par with human
play. However, to extend HyperNEAT-GGP to play arbi-
trary games in the Atari simulator, some future work is re-
quired.

8. FUTURE WORK
The most pressing direction for future work is to extend

HyperNEAT-GGP to a larger set of games. There are three
main challenges: large numbers of possible actions, many
different object classes, and robust visual processing.

In Freeway and Asterix, like in Robocup Keepaway, there
are relatively few classes of objects that matter: cars and
the chicken for Freeway, potions and lyres for Asterix, and
takers and keepers for Keepaway. With a limited number of
object classes it is easy to map from objects to substrate acti-
vations. For example, in Keepaway, keepers can be assigned
values of 1 and takers values of -1. Having such few values
allows HyperNEAT to easily differentiate between classes of
objects and exhibit appropriate behaviors for each, such as
avoiding lyres and collecting potions.

It is more difficult to differentiate between object classes
as the number of classes increases and crowds the map of
object class to substrate values. Accordingly, HyperNEAT
becomes increasingly unable to distinguish between and for-
mulate appropriate strategies for dealing with each class.

The second area of future work involves developing a bet-
ter way to handle a large number of actions. In games like
Freeway in which there are only a few actions (up, down,
no-op), it is possible to choose which action to take by ex-
amining values of the output nodes adjacent to the self node
(as described in Section 5.3). This issue becomes more com-
plicated when other actions such as button presses are in-
volved. For example, which node’s value should be examined
to decide if the button press action should be taken?

Finally, the visual processing stack could be made more
robust. Specifically, objects are sometimes lost when they
change shape or rotate. Additionally unmoving objects such
as walls are not detected. This introduces difficulties in
games such as Pac-man where static objects are essential
to the game dynamics. Finally self-identification could also
be improved by incorporating additional information about
how long each object has been on-screen, with the assump-
tion that the self object remains on screen while other ob-
jects are transitory. Further changes are encountered with
self objects which retain velocity – such as the spaceship in
Asteroids.

Addressing these areas of future work will go a long way
towards making HyperNEAT-GGP more generally applica-
ble to Atari games.

9. CONCLUSION
This paper introduces HyperNEAT-GGP, a HyperNEAT-

based general Atari game playing agent. Many Atari games
contain geometric regularities in the two-dimensional space
of the game screen. This structure allows HyperNEAT to
quickly learn effective policies. To reduce the complexity
of learning from the raw game screen, HyperNEAT-GGP
employs a game-independent visual processing hierarchy de-
signed to identify classes of objects as well as the entity that
the player controls on the game screen. Identified objects are

HyperNEAT-GGP: A HyperNEAT-based
Atari General Game Player

Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone
Department of Computer Science

University of Texas at Austin
{mhauskn,piyushk,risto,pstone}@cs.utexas.edu

ABSTRACT
This paper considers the challenge of enabling agents to
learn with as little domain-specific knowledge as possible.
The main contribution is HyperNEAT-GGP, a HyperNEAT-
based General Game Playing approach to Atari games. By
leveraging the geometric regularities present in the Atari
game screen, HyperNEAT effectively evolves policies for play-
ing two different Atari games, Asterix and Freeway. Results
show that HyperNEAT-GGP outperforms existing bench-
marks on these games. HyperNEAT-GGP represents a step
towards the ambitious goal of creating an agent capable of
learning and seamlessly transitioning between many differ-
ent tasks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning, Intelligent Agents

General Terms
Algorithms, Experimentation, Performance

Keywords
HyperNEAT, General Game Playing, Atari, Learning Agents,
Neuroevolution

1. INTRODUCTION
A major challenge for AI is to develop agents that can

learn and perform many different tasks. To this end, this
paper aims at developing a learning agent capable of play-
ing a large number of games with as little domain specific
knowledge as possible. Famous game playing AI systems
such as Deep Blue for chess [1], Watson for Jeopardy [6],
and TD-Gammon for backgammon [17] all demonstrate that
with enough manpower and ingenuity it is possible to tackle
AI challenges that may have previously seemed insurmount-
able. Unlike these game intelligences which were created and
tuned specifically for a single task, the game playing agent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

Figure 1: Freeway and Asterix, two of the many games
available for the Atari 2600.

described herein must be general enough to tackle many dif-
ferent Atari 2600 games. This requires general intelligence
to be built into the agent itself rather than just imparted
by the programmer of the agent in the form of clever single-
purpose algorithms.

This work focuses on learning to play Atari 2600 games,
a middle ground between classic board games and newer,
graphically intensive video games. The Atari 2600 includes
many different games, including complex ones such as chess
and checkers, yet lacks the complex 3-D graphics of newer
video games. Like traditional board games, the Atari pro-
vides opportunities for agents to benefit from a solid under-
standing of the game’s dynamics and allows for careful plan-
ning while at the same time incorporating simple visual rep-
resentations that can be processed and interpreted. Dynam-
ics of Atari games vary wildly from Checkers to Space In-
vaders, necessitating the use of general learning algorithms.

Despite the variability of game dynamics, all Atari games
share a standard interface designed for humans to inter-
act with and enjoy. Game state is conveyed to the player
through a 2D game screen, and in response, the player con-
trols game elements by manipulating a joystick and pressing
a single button. This standard interface, combined with the
large number of available games, makes Atari a convenient
platform for AI researchers.

This paper presents HyperNEAT-GGP, an agent which
uses an evolutionary algorithm called Hypercube-based Neu-
roEvolution of Augmenting Topologies (HyperNEAT) [7].
Unlike most other approaches, HyperNEAT is capable of
exploiting geometric regularities present in the 2D game
screen in order to evolve highly effective game playing poli-

freeway asterix

Matthew J. Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone:HyperNEAT-GGP: a hyperNEAT-based atari general game player. GECCO 2012: 
217-224

on Atari games



Issue: low-efficiency

Online update
Batch sampling

Yi-Qi Hu, Hong Qian, and Yang Yu. Sequential classification-based optimization for direct policy search. In: Proceedings of the 31st AAAI Conference 
on Artificial Intelligence (AAAI’17), San Francisco, CA, 2017, pp.2029-2035.

batch mode:

sequential mode:
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Table 2: The mean reward and the standard deviation of the best found policy by each algorithm. The numbers in bold mean
the best cumulated reward in each row. The mark # means the reward is the smaller the better, and " means the larger the better.
Task SRACOS RACOS CMA-ES DE CE IMGPO

Acrobot# 156.60±18.48 169.70±14.15 181.10±42.66 161.10±45.91 534.00±774.69 1545.00±736.14
MountainCar# 132.40±39.60 141.50±0.97 190.60±26.89 153.00±48.44 3048.90±4796.7 5171.40±5090.29
HalfCheetah" 36719.90±8288.84 27961.18±7493.08 20191.83±984.95 17250.21±305.01 14714.05±5169.94 10355.83±93.16
Humanoid" 502.57±88.03 398.03±19.23 357.09±124.77 428.97±67.89 423.58±27.88 209.75±3.16
Swimmer" 3692.65±7.89 3495.16±72.75 3202.33±11.98 3096.44±20.08 3002.26±46.14 270.73±3.27
Ant" 2114.14±2290.57 1215.28±1487.81 63.66±12.00 653.56±969.84 722.88±531.73 42.52±3.57
Hopper" 10818.98±501.11 9892.70±417.85 9986.81±0.96 9931.70±1.35 5149.48±5006.35 136.28±23.04
LunarLander" 238.14±15.61 193.45±35.62 132.62±35.18 125.00±93.86 92.45±110.81 64.29±27.32

Table 3: Parameters of the Gym tasks, including the dimen-
sionally of the state space dState, the number of actions, the
layers and the nodes of the feed-forward neural networks,
the number of weights, and the horizon steps.
Task name dState #Actions NN nodes #Weights Horizon

Acrobot 6 1 5, 3 48 2,000
MountainCar 2 1 5 15 10,000
HalfCheetah 17 6 10 230 10,000
Humanoid 376 17 25 9825 50,000
Swimmer 8 2 5, 3 61 10,000
Ant 111 8 15 1785 10,000
Hopper 11 3 9, 5 159 10,000
LunarLander 8 1 5, 3 58 10,000

�2⇥ 10

6, it indicates that helicopter has not crashed within
2,000 steps. Table 1 shows the top-5 average performance
on the rewards and the hovering steps, and the success rates
(hovering for 2,000 steps is a successful try) of the 15 re-
peats. The numbers in bold mean best performance in each
item. It indicates that SRACOS has best performance in ev-
ery item. We can get same conclusions from (a) and (b) in
Figure 5: the policies generated by SRACOS, RACOS, CMA-
ES and CE can reach maximum step within 10

5 evaluations.
But the helicopter can’t hover more than 500 steps with the
policies from DE and IMGPO. And it only costs SRACOS
about 40, 000 evaluations to reach the maximum step, faster
than RACOS, CMA-ES and CE.

Gym tasks In the OpenAI Gym environment, we use
eight existing controlling tasks, ‘Acrobot’, ‘MountainCar’,
‘HalfCheetah’, ‘Humanoid’, ‘Swimmer’, ‘Ant’, ‘Hopper’
and ‘LunarLander’ to test the algorithms. We also apply
neural network as policy. The task information and neural
network structures are showed in Table 3. For example, on
‘Acrobot’: |S| = 6, |A| = 1, the neural network has two
hidden layers with 5 and 3 neurons each, |w| = 48 and the
maximum number of steps is 2,000. We will give a sum-
mary of each task and the details can be found in homepage
of OpenAI Gym . In ‘Acrobot’, system includes two joints
and two links, where the joint between the two links is ac-
tuated. Initially, the links are hanging downwards and the
goal of this task is to swing the end of the low link up to a
given height. In ‘MountainCar’, a car is positioned in a val-

ley between two mountains and wants to drive up the moun-
tain on the right by building up momentum. ‘HalfCheetah’,
‘Humanoid’, ‘Swimmer’, ‘Ant’ and ‘Hopper’ are simula-
tion tasks. In those tasks, policy control simulated objects to
achieve a goal. For example, in ‘HalfCheetah’, policy should
control a cheetah with half body running forward as fast as
possible. ‘LunarLander’ is a video game to control a lander
to land on the surface of moon safely. The tasks of ‘Acrobot’
and ‘MountainCar’ are finding policies with smallest step
number when goals are met. The tasks except for ‘Acrobot’
and ‘MountainCar’ are finding policies to control object get-
ting score from environment as high as possible. Therefore,
in Table2, rows of ‘Acrobot’ and ‘MountainCar’ are step
numbers, the smaller the better. The other rows are scores
from environment, the larger the better. All algorithms use
at most 2,000 evaluations for each task.

We independently execute each method 15 times respec-
tively on every task. And for each running, the result (policy)
will be tested independently for 10 times to calculate the av-
erage cumulated reward (i.e., 20,000 total samples of trajec-
tories in policy search). Finally, we pick up the policy with
the best cumulated reward, and report the mean and standard
deviation of the policy in Table 2. It can be observed that
SRACOS obtained the best results on all of those tasks. Espe-
cially on complex tasks from HalfCheetah to LunarLander,
SRACOS drastically improved the average reward.

Conclusion
In this paper, we propose the sequential classification-

based derivative-free optimization method, SRACOS, for
solving policy optimization problems in direct policy search,
where solutions have to be sampled sequentially. We analyze
the query complexity of SRACOS, and disclose the possibil-
ity that SRACOS can be more efficient than its batch-mode
counterpart. In empirical analysis, we first study the proper-
ties of SRACOS on synthetic functions, showing its better
convergence speed and stronger scalability than the other
state-of-the-art derivative-free methods. On reinforcement
learning tasks, SRACOS demonstrates significantly better
performance than the other compared methods, showing that
SRACOS is suitable for direct policy search with sequential
sampling. Future work include designing better direct policy
search methods using the power of SRACOS, and designing
policy search methods for robust policies with more practi-
cal goals, such as high reward with small variance.

Online updateBatch sampling

Yi-Qi Hu, Hong Qian, and Yang Yu. Sequential classification-based optimization for direct policy search. In: Proceedings of the 31st AAAI Conference 
on Artificial Intelligence (AAAI’17), San Francisco, CA, 2017, pp.2029-2035.
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Evolution Strategies as an Alternative for Reinforcement Learning

2.1. Scaling and parallelizing ES

ES has three aspects that make it particularly well suited
to be scaled up to many parallel workers: 1) It operates on
complete episodes, thereby requiring only infrequent com-
munication between the workers. 2) The only information
obtained by each worker is the scalar return of an episode:
provided the workers know what random perturbations the
other workers used, each worker only needs to send and re-
ceive a single scalar to and from each other worker to agree
on a parameter update. ES thus requires extremely low
bandwidth, in sharp contrast to policy gradient methods,
which require workers to communicate entire gradients. 3)
It does not require value function approximations. Rein-
forcement learning with value function estimation is inher-
ently sequential: In order to improve upon a given policy,
multiple updates to the value function are typically needed
in order to get enough signal. Each time the policy is then
significantly changed, multiple iterations are necessary for
the value function estimate to catch up.

A simple parallel version of ES is given in Algorithm 2.

Algorithm 2 Parallelized Evolution Strategies
1: Input: Learning rate ↵, noise standard deviation �,

initial policy parameters ✓0
2: Initialize: n workers with known random seeds, and

initial parameters ✓0
3: for t = 0, 1, 2, . . . do
4: for each worker i = 1, . . . , n do
5: Sample ✏i ⇠ N (0, I)
6: Compute returns Fi = F (✓t + �✏i)
7: end for
8: Send all scalar returns Fi from each worker to every

other worker
9: for each worker i = 1, . . . , n do

10: Reconstruct all perturbations ✏j for j = 1, . . . , n
11: Set ✓t+1  ✓t + ↵ 1

n�

Pn
j=1 Fj✏j

12: end for
13: end for

In practice, we implement sampling by having each worker
instantiate a large block of Gaussian noise at the start of
training, and then perturbing its parameters by adding a
randomly indexed subset of these noise variables at each it-
eration. Although this means that the perturbations are not
strictly independent across iterations, we did not find this to
be a problem in practice. Using this strategy, we find that
the second part of Algorithm 2 (lines 9-12) only takes up a
small fraction of total time spend for all our experiments,
even when using up to 1,440 parallel workers. When using
many more workers still, or when using very large neu-
ral networks, we can reduce the computation required for
this part of the algorithm by having workers only perturb a
subset of the parameters ✓ rather than all of them: In this

case the perturbation distribution p corresponds to a mix-
ture of Gaussians, for which the update equations remain
unchanged. At the very extreme, every worker would per-
turb only a single coordinate of the parameter vector, which
means that we would be using pure finite differences.

To reduce variance, we use antithetic sampling (Geweke,
1988), also known as mirrored sampling (Brockhoff et al.,
2010) in the ES literature: that is, we always evaluate pairs
of perturbations ✏,�✏, for Gaussian noise vector ✏. We also
find it useful to perform fitness shaping (Wierstra et al.,
2014) by applying a rank transformation to the returns be-
fore computing each parameter update. Doing so removes
the influence of outlier individuals in each population and
decreases the tendency for ES to fall into local optima early
in training. In addition, we apply weight decay to the pa-
rameters of our policy network: this prevents the parame-
ters from growing very large compared to the perturbations.

Evolution Strategies, as presented above, works with full-
length episodes. In some rare cases this can lead to low
CPU utilization, as some episodes run for many more steps
than others. For this reason, we cap episode length at a
constant m steps for all workers, which we dynamically
adjust as training progresses. For example, by setting m
to be equal to twice the average number of steps taken per
episode, we can guarantee that CPU utilization stays above
50% in the worst case.

We plan to release full source code for our implementation
of parallelized ES in the near future.

2.2. The impact of network parameterization

Whereas RL algorithms like Q-learning and policy gradi-
ents explore by sampling actions from a stochastic policy,
Evolution Strategies derives learning signal from sampling
instantiations of policy parameters. Exploration in ES is
thus driven by parameter perturbation. For ES to improve
upon parameters ✓, some members of the population must
achieve better return than others: i.e. it is crucial that Gaus-
sian perturbation vectors ✏ occasionally lead to new indi-
viduals ✓ + �✏ with better return.

For the Atari environments, we found that Gaussian per-
turbations on the parameters of DeepMind’s convolutional
architectures (Mnih et al., 2015) did not always lead to ad-
equate exploration: For some environments, randomly per-
turbed parameters tended to encode policies that always
took one specific action regardless of the state that was
given as input. However, we discovered that we could get
performance matching that of policy gradient methods for
most games by using virtual batch normalization (Salimans
et al., 2016) in the policy specification. Virtual batch nor-
malization is precisely equivalent to batch normalization
(Ioffe & Szegedy, 2015) where the minibatch used for cal-
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hyperparameters for all the Atari environments, and a
different set of fixed hyperparameters for all MuJoCo
environments (with the exception of one binary hyper-
parameter, which has not been held constant between
the different MuJoCo environments).

The evolution strategies method has several highly attrac-
tive properties: indifference to the distribution of rewards
(sparse or dense), and tolerance of potentially arbitrary
long time horizons. However, it was perceived to be less
effective at solving hard reinforcement learning problems
compared to techniques like Q-learning and policy gra-
dients, which caused it to recently be neglected by the
broader machine learning community. The contribution of
this work, which we hope will renew interest in the evolu-
tion strategies method and lead to new useful applications,
is a demonstration that evolution strategies can be compet-
itive with current RL algorithms on the hardest environ-
ments studied by the deep RL community today.

2. Evolution Strategies
Evolution Strategies (ES) is a class of black box opti-
mization algorithms first proposed by Rechenberg & Eigen
(1973) and further developed by Schwefel (1977). ES al-
gorithms are heuristic search procedures inspired by natu-
ral evolution: At every iteration (“generation”), a popula-
tion of parameter vectors (“genotypes”) is perturbed (“mu-
tated”) and their objective function value (“fitness”) is eval-
uated. The highest scoring parameter vectors are then re-
combined to form the population for the next generation,
and this procedure is iterated until the objective is fully op-
timized. Algorithms in this class differ in how they rep-
resent the population and how they perform mutation and
recombination. The most widely known member of the ES
class is the covariance matrix adaptation evolution strategy
(CMA-ES; Hansen & Ostermeier, 2001), which represents
the population by a full-covariance multivariate Gaussian.
CMA-ES has been extremely successful in solving opti-
mization problems in low to medium dimension.

The version of ES we use in this work belongs to the class
of natural evolution strategies (NES; Wierstra et al., 2008;
2014; Yi et al., 2009; Sun et al., 2009; Glasmachers et al.,
2010a;b; Schaul et al., 2011) and is closely related to the
work of Sehnke et al. (2010). Let F denote the objective
function acting on parameters ✓. NES algorithms represent
the population with a distribution over parameters p (✓)—
itself parameterized by  —and proceed to maximize the
average objective value ⌘( ) = E✓⇠p F (✓) over the pop-
ulation by searching for  with stochastic gradient ascent.
Specifically, using the score function estimator for r ⌘ in
a fashion similar to REINFORCE (Williams, 1992), NES
algorithms take gradient steps on  with the following es-

timator:

r ⌘( ) = E✓⇠p {F (✓)r log p (✓)}

For the special case where p is factored Gaussian (as
in this work), the resulting gradient estimator is also
known as simultaneous perturbation stochastic approxima-
tion (Spall, 1992), parameter-exploring policy gradients
(Sehnke et al., 2010), or zero-order gradient estimation
(Nesterov & Spokoiny, 2011).

In this work, we focus on reinforcement learning problems,
so F (·) will be the stochastic return provided by an en-
vironment, and ✓ will be the parameters of a determinis-
tic or stochastic policy ⇡✓ describing an agent acting in
that environment, controlled by either discrete or contin-
uous actions. Much of the innovation in RL algorithms
is focused on coping with the lack of access to or exis-
tence of derivatives of the environment or policy. Such
non-smoothness can be addressed with ES as follows. We
instantiate the population distribution p as an isotropic
multivariate Gaussian with mean  and fixed covariance
�2I , allowing us to write ⌘ in terms of a mean parame-
ter vector ✓ directly: we set ⌘(✓) = E✏⇠N(0,I) F (✓ + �✏).
With this setup, ⌘ can be viewed as a Gaussian-blurred ver-
sion of the original objective F , free of non-smoothness in-
troduced by the environment or potentially discrete actions
taken by the policy. Further discussion about the ES-based
approach to coping with non-smoothness, compared to the
approach taken by policy gradient methods, can be found
in section 3.

With ⌘ defined in terms of ✓, we optimize over ✓ using
stochastic gradient ascent with the score function estima-
tor:

r✓⌘(✓) =
1

�
E✏⇠N(0,I) {F (✓ + �✏) ✏}

which can be approximated with samples. The resulting al-
gorithm (1) repeatedly executes two phases: 1) Stochasti-
cally perturbing the parameters of the policy and evaluating
the resulting parameters by running an episode in the envi-
ronment, and 2) Combining the results of these episodes,
calculating a stochastic gradient estimate, and updating the
parameters.

Algorithm 1 Evolution Strategies
1: Input: Learning rate ↵, noise standard deviation �,

initial policy parameters ✓0
2: for t = 0, 1, 2, . . . do
3: Sample ✏1, . . . ✏n ⇠ N (0, I)
4: Compute returns Fi = F (✓t + �✏i) for i = 1, . . . , n
5: Set ✓t+1  ✓t + ↵ 1

n�

Pn
i=1 Fi✏i

6: end for

evolutionary strategies
centralized parallel
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needs hierarchy to succeed (Parr & Russell, 1998), which
is not as necessary when using black box optimization.

4. Experiments
4.1. MuJoCo

We evaluated ES on a benchmark of standard continuous
robotic control problems in the OpenAI Gym (Brockman
et al., 2016) against a highly tuned implementation of Trust
Region Policy Optimization (Schulman et al., 2015a), a
policy gradient algorithm designed to be stable and efficient
for optimizing neural network policies. The problems we
tested the algorithms on ranged from simple classic con-
trol problems—like the balancing an inverted pendulum—
to more difficult problems found in the recent RL and
robotics literature—like learning 2D hopping and walking
gaits. The environments were simulated by the MuJoCo
physics engine (Todorov et al., 2012).

We used both ES and TRPO to train policies with identical
architectures: multilayer perceptrons with two 64-unit hid-
den layers separated by tanh nonlinearities. We found that
ES occasionally benefited from different action parameter-
izations for different environments. For the hopping and
swimming tasks, we discretized the actions for ES by bin-
ning each action dimension into 10 bins spaced uniformly
across its bounds. In these environments, the policies sim-
ply did not explore enough otherwise because the actions
were too smooth with respect to parameter perturbation, as
discussed in section 2.2.

We found that ES was able to solve these tasks up to
TRPO’s final performance after 5 million timesteps of envi-
ronment interaction. To obtain this result, we ran ES over
6 random seeds and compared the mean learning curves
to similarly computed learning curves for TRPO. The ex-
act sample complexity tradeoffs over the course of learning
are listed in Table 1, and detailed results are listed in Ta-
ble 4 of the supplementary material. Generally, we were
able to solve the environments in less than 10x penalty in
sample complexity on the hard environments (Hopper and
Walker2d) compared to TRPO. On simple environments,
we achieved up to 3x better sample complexity than TRPO.

4.2. Atari

We ran our parallel implementation of Evolution Strategies,
described in Algorithm 2, on 51 Atari 2600 games avail-
able in OpenAI Gym (Brockman et al., 2016). We used
the same preprocessing and feedforward CNN architecture
used by (Mnih et al., 2016). All games were trained for
1 billion frames, which requires about the same amount of
neural network computation as the published 1-day results
for A3C (Mnih et al., 2016) which uses 320 million frames.
The difference is due to the fact that ES does not perform

Table 1. MuJoCo tasks: Ratio of ES timesteps to TRPO timesteps
needed to reach various percentages of TRPO’s learning progress
at 5 million timesteps.

ENVIRONMENT 25% 50% 75% 100%

HALFCHEETAH 0.15 0.49 0.42 0.58
HOPPER 0.53 3.64 6.05 6.94
INVERTEDDOUBLEPENDULUM 0.46 0.48 0.49 1.23
INVERTEDPENDULUM 0.28 0.52 0.78 0.88
SWIMMER 0.56 0.47 0.53 0.30
WALKER2D 0.41 5.69 8.02 7.88

backpropagation and does not use a value function. By par-
allelizing the evaluation of perturbed parameters across 720
CPUs on Amazon EC2, we can bring down the time re-
quired for the training process to about one hour per game.
After training, we compared final performance against the
published A3C results and found that ES performed better
in 23 games tested, while it performed worse in 28. The
full results are summarized in Table 3 in the supplementary
material.

4.3. Parallelization

ES is particularly amenable to parallelization because of its
low communication bandwidth requirement (Section 2.1).
We implemented a distributed version of Algorithm 2 to in-
vestigate how ES scales with the number of workers. Our
distributed implementation did not rely on special network-
ing setup and was tested on public cloud computing service
Amazon EC2.

We picked the 3D Humanoid walking task from OpenAI
Gym (Brockman et al., 2016) as the test problem for our
scaling experiment, because it is one of the most challeng-
ing continuous control problems solvable by state-of-the-
art RL techniques, which require about a day to learn on
modern hardware (Schulman et al., 2015a; Duan et al.,
2016a). Solving 3D Humanoid with ES on one 18-core
machine takes about 11 hours, which is on par with RL.
However, when distributed across 80 machines and 1, 440
CPU cores, ES can solve 3D Humanoid in just 10 min-
utes, reducing experiment turnaround time by two orders
of magnitude. Figure 1 shows that, for this task, ES is able
to achieve linear speedup in the number of CPU cores.

4.4. Invariance to temporal resolution

It is common practice in RL to have the agent decide on
its actions in a lower frequency than is used in the simu-
lator that runs the environment. This action frequency, or
frame-skip, is a crucial parameter in reinforcement learning
(Braylan et al., 2000). If the frame-skip is set too high, the
agent is not able to make its decisions at a fine enough time-

time steps of ES to the top 
performance of TRPO



More issues to be solved

Noisy evaluation: too many repetitions
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Large model: too large search space

Long-term reward: too complex objective function



Thanks for your time!
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