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Outline of the Tutorial

Part I: Fundamentals
@ Introduction to evolutionary computation (EC)
@ EC for dynamic optimization problems (DOPs): Concept and motivation
@ Benchmark and test problems
@ Performance measures
Part II: Approaches, Issues and Future Work
@ EC enhancement approaches for DOPs
@ Case studies
@ Relevant issues
@ Future work
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What Is Evolutionary Computation (EC)?

@ EC encapsulates a class of stochastic optimization algorithms, dubbed
Evolutionary Algorithms (EAs)

@ An EA is an optimisation algorithm that is

Generic: a black-box tool for many problems
Population-based: evolves a population of candidate solutions
Stochastic: uses probabilistic rules

Bio-inspired: uses principles inspired from biological evolution

Black Box Solver

Problem to solve —— A set of soultions
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Design and Framework of an EA

Given a problem to solve, first consider two key things:
@ Representation of solution into individual
@ Evaluation or fitness function

Then, design the framework of an EA:

@ Initialization of population mD
Parents
@ Evolve the population iolsaton

@ Selection of parents

@ Variation operators (recombination & m@
mutation)

@ Selection of offspring into next i

generation Termination [j
Offspring
@ Termination condition: a given number

Survivor selection
of generations

Recombination

Mutation
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EC Applications

@ EAs are easy-to-use: No strict requirements to problems

@ Widely used for optimisation and search problems
@ Financial and economical systems
@ Transportation and logistics systems
@ Industry engineering
@ Automatic programming, art and music design
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EC for Optimisation Problems

@ Traditionally, research on EAs has focused on static problems
@ Aim to find the optimum quickly and precisely

@ Optimal solution © Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution
o o
© o
° ) © o ¢ © %
© [¢]
[0} o [0}
© [}
Search space Search space (Initial population) Search Space (Population converging at time t)

@ But, many real-world problems are dynamic optimization problems
(DOPs), where changes occur over time
@ In transport networks, travel time between nodes may change
@ In logistics, customer demands may change
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What Are DOPs?

@ In general terms, “optimization problems that change over time” are
called dynamic problems/time-dependent problems

F =f(X,0,1)

— X: decision variable(s); (5: parameter(s); t: time
@ DOPs: special class of dynamic problems that are solved online by an
algorithm as time goes by
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Why DOPs Challenge EC?

@ For DOPs, optima may move over time in the search space
@ Challenge: need to track the moving optima over time

© Candidate soultion in population @ Optimal solution © Candidate soultion in population @ Optimal solution

& -

Search Space (Population converging at time t) Search Space (Optimum moved at time t+1)

@ DOPs challenge traditional EAs
@ Once converged, hard to escape from an old optimum
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Why EC for DOPs?

@ Many real-world problems are DOPs

@ EAs, once properly enhanced, are good choice

@ Inspired by natural/biological evolution, always in dynamic environments
@ |Intrinsically, should be fine to deal with DOPs

@ Many events on EC for DOPs recently
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Relevant Events

@ Books (Monograph or Edited):
@ Yang & Yao, 2013; Alba et al., 2013; Yang et al., 2007; Morrison, 2004;
Weicker, 2003; Branke, 2002
@ PhD Theses:
@ Jiang, 2017; Mavrovouniotis, 2013; Helbig, 2012; du Plessis, 2012; Li,
2011; Nguyen, 2011; Simoes, 2010
@ Journal special issues:
@ Neri & Yang, 2010; Yang et al., 2006; Jin & Branke, 2006; Branke, 2005
@ Workshops and conference special sessions:

@ EvoSTOC (2004-2017): part of Evo*
o ECIDUE (2004-2017): part of IEEE CEC
@ EvoDOP ("99, 01, ’03, '05, ’07, '09): part of GECCO

@ |EEE Symposium on CIDUE (2011, 2013-2017)
@ |EEE Competitions: within IEEE CEC’09, CEC’'12 & CEC’14
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Benchmark and Test DOPs

@ Basic idea: change base static problem(s) to create DOPs

@ Real space:

@ Switch between different functions

@ Move/reshape peaks in the fitness landscape
@ Binary space:

@ Switch between > 2 states of a problem: knapsack

@ Use binary masks: XOR DOP generator (Yang & Yao’05)
@ Combinatorial space:

@ Change decision variables: item weights/profits in knapsack problems
@ Add/delete decision variables: new jobs in scheduling, nodes
added/deleted in network routing problems
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The DF1 Generator

@ Proposed by Morrison & De Jong (1999)
@ The base landscape in the D-dimensional real space:

D
¥) — . R. LX)
f(X) = max_ !H, R x ;(x, Xj)
—X = (x1,--+,Xp): a point in the landscape; p: number of peaks

—H;, Ri, X; = (Xi1,--- , Xip): height, slope, center of peak i
@ The dynamics is controlled by a logistics function:

Ar=A-Drq-(1—Apy)

— A€ [1.0,4.0]: a constant; A;: step size of changing a parameter
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Moving Peaks Benchmark (MPB) Problem

@ Proposed by Branke (1999)
@ The MPB problem in the D-dimensional space:

max Hi(t)
----- P+ Wi(1) 7 (x5(1) — Xi(1))2

— Wi(t), Hi(t), Xi(t) = {Xi1 - - - Xip}: height, width, location of peak i at t
@ The dynamics:

Hi(t) = Hi(t — 1) + height_severity x o
Wi(t) = Wi(t — 1) + width_severity x o
- s S =
Vi(t) = ————((1 = N)r+ v(t—1
) = gy (1~ P+ (= 1)

Xi(t) = Xi(t)(t — 1) + vi(1)
— o ~ N(0,1); \: correlated parameter
— Vi(t): shift vector, which combines random vector 7 and v;(t — 1) and is
normalized to the shift length s
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Dynamic Knapsack Problems (DKPs)

@ Static knapsack problem:
@ Given nitems, each with a weight and a profit, and a knapsack with
a fixed capacity, select items to fill up the knapsack to maximize the
profit while satisfying the knapsack capacity constraint
@ The DKP:
@ Constructed by changing weights and profits of items, and/or knapsack
capacity over time as:

n

Max f(X(t), t) :ipi(t)-x,-(t), s tr > wit)-xi(t) < C(1)

i=1 i=1

— X(t) € {0,1}": a solution at time t

— x;(t) € {0, 1}: indicates whether item i is included or not
— pi(t) and w;(t): profit and weight of item i at ¢

— C(t): knapsack capacity at t
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The XOR DOP Generator

@ The XOR DOP generator can create DOPs from any binary f(X) by an
XOR operator “¢” (Yang, 2003; Yang & Yao, 2005)

@ Suppose the environment changes every T generations
@ For each environmental period k = |t/7], do:

Sute 1 @ Create a template T, with p = / ones
M(1)=1001011010

wes--. ' Create a mask I\7I(k) incrementally
M(0)&T(0)

M(0) =0 (the initial state)

- (k+1)=M(k)@T(k)
State 0 (Initial State) State 3
- © Evaluate an individual:
M(2)=0111010011 f()“(', f) = f()_('@ M(k))

State 2

T(0)=1001011010 T(1)=1110001001 ~ T(2)=1010010110

@ 7 and p controls the speed and severity of change respectively
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Constructing Cyclic Dynamic Environments

Can extend the XOR DOP generator to create cyclic environments:

@ Construct K templates T(0),--- ,T(K—1)

@ Form a partition of the search space
@ Each contains p x I = I/K ones

Partition Templates:  T(0)=1001011010 v T(1)=0110100101

Base State |

M(1)=1001011010

\ @ Create 2K masks M(i) as base states
M3 T()
Base State 0
(Initial State) Base State 2 _, N o
M0}=0000000000 M@= M(0) = 0 (the initial state)
NS TH) MO TO) M(i +1) = M(i) ® T(i%K),i=0,--- ,2K—1

MB=0I010010! @ Cycle among M(i)’s every T generations

Base State 3

f(X,t) = (X ® M(k)) = (X ® M(k%(2K)))
— k = [t/7]: environmental index
— It = k%(2K): mask index
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Constructing Cyclic Environments with Noise

We can also construct cyclic environments with noise:

@ Each time before a base state is entered, it is bitwise changed with a
small probability

Base State 1

M(1)=100101101]

Bit 10 changed \ Base State 2
by noise
M@)=0I 11111111

Base State 0
(Initial State)

M(0)=0000000000

Bit 6 changed
by noise

/ Bit 1 changed

M(3)=01101]p101 by noise

Base State 3
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Dynamic Traveling Salesman Problems

@ Stationary traveling salesman problem (TSP):

@ Given a set of cities, find the shortest route that visits each city once and
only once

@ Dynamic TSP (DTSP):
@ May involve dynamic cost (distance) matrix

D(t) = {dj(t)}n<n

— dj(t): cost from city i to j; n: the number of cities

@ The aim is to find a minimum-cost route containing all cities at time t
@ DTSP can be defined as f(x, t):

f(x, t) = Min(i O iy (1))

i=1

where x; € 1,--- ,n. If i # j, xi # X;, and Xp11 = Xq
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Dynamic Permutation Benchmark Generator

@ The dynamic benchmark generator for permutation-encoded problems
(DBGP) can create a DOP from any stationary TSP/VRP by swapping
objects:

@ Generate a random vector 7(T) that

Optimum - >(043,210)=9  Distance matrix before change

TRAD0 contains all objects every f iterations

0f0 3 6 5 1

) [B80 AREE @ Generate another randomly re-order vector

2(6 2 0 1 4 — . )

als s 102 r’(T) that contains only the first m x n

r sz o objects of 7(T)

Swap City Location (4,2)
Optimum -> (0,2,3,4,1,0) = 9 Distance matrix after change . . .

e Q Modify the encoding of the problem instance

ofo s 1 s e with m x n pairwise swaps

1|3 0 3 3 2

2(1 3 0 2 4

35 3 2 0 1

4(6 2 4 1 0

@ More details: M. Mavrovouniotis, S. Yang, & X. Yao (2012). PPSN Xil, Part I,
LNCS 7492, pp. 508-517
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Effect on Algorithms

@ Similar with the XOR DOP generator, DBGP shifts the
population of an alg. to new location in the fitness landscape

@ The individual with the same encoding as before a change will have a
different cost after the change

Evolutionary Algorithms

Population of Individuals Population of Individuals
1=(0,1,34,2,0) =18 1=(0,1,34,2,0)=12
2=(1,42301)=16 2=(1,4,230,1) =16
3=(043210=9 Dynamic Change 3=(0,4,321,0)=15

. - - .
H=(304213)=15 b=(304213) =21

Ant Colony Optimization

Heuristic Information Matrix Heuristic Information Matrix

0 1 2 3 4 0 1 2 3 4
0 0O 0.330.16008 1 0| 0 033 1 02016
1033 0 05 0.330.33 oyname Change 1[0.33 0 033033 05
2(0.16 05 0 1025 ————— — — »- 2|1 033 0 05 025
3|/0203 1 0 05 3|02 03305 0 1
4| 1 033025 05 0O 41016 05 025 1 O

@ Can extend for cyclic and cyclic with noise environments
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Generalized DOP Benchmark Generator (GDBG)

@ Proposed by Li & Yang (2008), GDBG uses the model below:

Generalized DBG

Real Space ‘ Combinatory Spac%

@ In GDBG, DOPs are defined as:
F = f(X? ¢’ t)7

— ¢: system control parameter
@ Dynamism results from tuning ¢ of the current environment

P(t+1)=o(t) & Ag

— Ag: deviation from the current control parameter(s)
@ The new environment at f + 1 is as follows:

f(x, ¢, t+1) = f(x, 6(t) © A, 1)

Tutorial: EC for DOPs |IEEE CEC 2017, 05/06/2017

Binary Space

¥ 80uejsu|

¥ 8ouelSu|

PEE]
7 ouBIsU|
Z duejsu|

Shengxiang Yang (De Montfort University)



GDBG: Dynamic Change Types

@ Change types:
@ Small step: Ap = - ||¢|| - rand()
Q Large step: Ap = 4] - (o + (1 — a)rand())
© Random: A¢ = | ¢|| - rand()
Q Chaotic: ¢(t +1) = A- ¢(1) - (1 — o(1)/|1]])
@ Recurrent: ¢(t +1) = ¢(t%P)
© Recurrent with nosy: ¢(t + 1) = ¢(t%P) + « - ||¢|| - rand()

@ More details:
@ C.Li&S. Yang (2008). SEAL08, LNCS 5361, pp. 391-400
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DOPs: Classification

Classification criteria:

@ Time-linkage: Does the future behaviour of the problem depend on the
current solution?

@ Predictability: Are changes predictable?
@ Visibility: Are changes visible or detectable
@ Cyclicity: Are changes cyclic/recurrent in the search space?

@ Factors that change: objective, domain/number of variables, constraints,
and/or other parameters
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DOPs: Common Characteristics

Common characteristics of DOPs in the literature:
@ Most DOPs are non time-linkage problems
For most DOPs, changes are assumed to be detectable
In most cases, the objective function is changed
Many DOPs have unpredictable changes

o
o
o
@ Most DOPs have cyclic/recurrent changes
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Performance Measures

@ For EC for stationary problems, 2 key performance measures

@ Convergence speed
@ Success rate of reaching optimality

@ For EC for DOPs, over 20 measures (Nguyen et al., 2012)

@ Optimality-based performance measures
@ Collective mean fithess or mean best-of-generation
@ Accuracy
@ Adaptation
@ Offline error and offline performance
@ Mean distance to optimum at each generation

@ Behaviour-based performance measures
Reactivity

Stability

Robustness

Satisficability

Diversity measures

©0 00690
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Performance Measures: Examples

@ Collective mean fitness (mean best-of-generation):

I___BOG 1 Z/ G 1 Zji FBOG‘])

— G and N: number of generations and runs, resp.
- Fsoe,-,-i best-of-generation fitness of generation i of run j
@ Adaptation performance (Mori et al., 1997)

Ada = lT Z (Toest(t)/ fopt(1))

t=1..T

@ Accuracy (Trojanowski and Michalewicz, 1999)

Acc = 1? Z (Toest (i) — fopt (1))

i=1..K

— frest(f): best fitness for environment i (best before change)
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Part Il: Approaches, Issues and Future Work

@ EC enhancement approaches for DOPs
@ Case studies

@ Relevant issues

@ Future work
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EC for DOPs: First Thinking

@ Recap: traditional EAs are not good for DOPs
@ Goal: to track the changing optimum

@ How about restarting an EA after a change?
@ Natural and easy choice
@ But, not good choice because:

It may be inefficient, wasting computational resources
It may lead to very different solutions before and after a change.
For real-world problems, we may expect solutions to remain similar

@ Extra approaches are needed to enhance EAs for DOPs
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EC for DOPs: General Approaches

@ Many approaches developed to enhance EAs for DOPs

@ Typical approaches:
@ Memory: store and reuse useful information
o Diversity: handle convergence directly
@ Multi-population: co-operate sub-populations
Adaptive: adapt generators and parameters
@ Prediction: predict changes and take actions in advance

@ They have been applied to different EAs for DOPs

(4
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Memory Approaches

@ Cyclic DOPs: change cyclically among a fixed set of states

© Candidate soultion in population @ Optimal solution

s
i}
[ ]

_ e

.

Search space (Optimum moves cyclically)

@ Memory works by storing and reusing useful information

@ Two classes regarding how to store information
@ Implicit memory: uses redundant representations

@ Multiploidy and dominance (Ng & Wong, 1995; Lewis et al., 1998)
@ Dualism mechanisms (Yang, 2003; Yang & Yao, 2005)

@ Explicit memory: uses extra space to store information
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Implicit Memory: Diploid Genetic Algorithms

Encoding Dominance Scheme
Genotype o ° 1 i
=T V777 [ 1 Chromosome 1 ofol]olonlo
T T p777] [ -3 Chromosome 2 oflo| o 1 |0/
J7 1 o1 1
—to—Phe
Genolyp;[ z:;;Pingenotyp Dominance Scheme i 0 |0/1] 1 1
Ng & Wong (1995)
‘:W Phenotype AlB|C|D
; Alojlo|o |1
Evaluating BloO 0 0 1
Fitness C 0 0 1 1
Genotypic Alleles: [ 7777 - Dptrjtrjtjt

Phenotypic Alleles: ] N

@ Each individual has a pair of chromosomes
@ Dominance scheme maps genotype to phenotype

@ Dominance scheme may change or be adaptive (Uyar & Harmanci,
2005)
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Explicit Memory Approaches

Basic idea: use extra memory
@ With time, store useful information of the pop into memory
@ When a change occurs, use memory to track new optimum

© Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution

@ Memory solutions @ Memory solutions ® Memory solutions
R R R R e
4 &
L) ’ L) °
° . L] °
Qdo Qdo [
OO0 OO0 ® f'.
® ® LY
Search space (Memory stores best solutions) Search space (Optimum moves to next state) Search space (Population moves to new optimum)
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Explicit Memory: Direct vs Associative

@ Direct memory: store good solutions (Branke, 1999)

@ Associative memory: store environmental information + good solutions
(Yang & Yao, 2008)

Main Population Main Population

Update memory 2. Select ~ Update memory

1. Select be 1. Extract \y 3. Replace
. Select best i
pop member env info

2. Associate

2. Create
2. Replace one . 1. Merge 3. Replace
memory solution
1. Associate

Retrieve memory
Retrieve memory

Memory

Memory A Environment information O Solution

Direct Memory Associative Memory
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Associative Memory Based Genetic Algorithm

Idea: Use allele distribution (AD) Dto represent environmental info.

@ Use memory to store <D, S> pairs
@ Update memory by similarity policy
@ Re-evaluate memory every generation. If

Main Population

Update memory
1. Extract allele 3. Replace Change deteCted
1, Btractal o
prbuton 2“:" 8 @ Extract best memory AD: Dy

. Assoclate . . —

2. Create @ Create solutions by sampling Dy,
3. Replace @ Replace them into the pop randomly
_ 1. Associate o DetaIIS

Retrieve memory

@ S. Yang (2006). EvoWorkshops’'06, pp. 788—799

Memory

A Allele distribution vector O Solution
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Diversity Approaches: Random Immigrants

@ Convergence is the key problem in metaheuristics for DOPs

@ Random immigrants:
@ Each generation, insert some random individuals (called random
immigrants) into the population to maintain diversity
@ When optimum moves, random immigrants nearby take action to draw the
pop to the new optimum

© Candidate soultion in population @ Optimal solution ~ © Candidate soultion in population @ Optimal solution O Candidate soultion in population @ Optimal solution

b L ]
oo
e e.
el
Previous random immigrant
Random immigrants Random immigrants
Search Space (Population converging at time t) Search Space (Optimum moved at time t+1) Search Space (Population moves to new optimum)
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Memory-Based Immigrants

@ Random immigrants maintain the diversity while memory adapts an
algorithm directly to new environments

@ Memory-based immigrants: uses memory to guide immigrants
towards current environment
@ Re-evaluate the memory every generation
@ Retrieve the best memory point By(t) as the base
@ Generate immigrants by mutating By (t) with a prob.
@ Replace worst members in the population by these immigrants

current best memory point random immigrants
current
optimum
O
memory—based immigrants memory points

Search Space
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Experimental Results: Immigrants Based GAs

Cyclic Dynamic OneMax Function, T = 25, p = 0.1 Random Dynamic OneMax Function, - = 25, p = 0.1
100 T T T T 100 T T T T
sho soa— I 1
RIGA -~
g MEGA - g pEGA -
g 0F | MRIGA 1 £ of MG ]
i MIGA i MIGA
-] -]
R IR E
v v
9 9
& &
9 9
4 %
2 2
65 1 1 1 1 65 1 1 1 1
4500 4600 4700 4800 4900 5000 4300 4600 4700 4800 4900 5000
Generation Generation

@ Memory-based immigrants GA (MIGA) significantly beats other GAs

@ More details:
@ S. Yang (2008). Evol. Comput., 16(3): 385-416
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Hybrid Immigrants Approach

@ Combines elitism, dualism and random immigrants ideas
@ Dualism: Given X = (x1,--- ,X) € {0,1}, its dual is defined as
?d = dU&I()?) = (X‘;jv"' ’de) € {071}I

where x¢ =1 — x;

@ Each generation t, select the best individual from previous generation,
E(t — 1), to generate immigrants

@ Elitism-based immigrants: Generate a set of individuals by mutating
E(t — 1) to address slight changes

@ Dualism-based immigrants: Generate a set of individuals by mutating the
dual of E(t — 1) to address significant changes

@ Random immigrants: Generate a set of random individuals to address
medium changes

@ Replace these immigrants into the population

@ More details:
@ S.Yang & R. Tinos (2007). Int. J. of Autom. & Comp., 4(3): 243-254
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Experimental Results: Hybrid Immigrants GA

Offline Performance

Offline Performance

OneMax, T =10

Royal Road, t =10

Deceptive, =10

Offline Performance

Offline Performance
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@ Hybrid immigrants improve GA’s performance for DOPs efficiently
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Multi-Populations: Shifting Balance

@ Multi-population scheme uses co-operating sub-populations

@ Shifting Balance GA (Oppacher & Wineberg, 1999):

@ A core population exploits the promising area
@ Several colonies explore the search space

I migration
Core
Population

migratij/ ‘N: gration
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Multi-Populations: Self-Organizing Scouts

@ Self-organizing scouts (SOS) GA (Branke et al., 2000)

@ The parent population explores the search space
@ A child population is split under certain conditions
@ Child populations search limited promising areas

Parent
Population

evolve

split

evolve

child
population 1

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs IEEE CEC 2017, 05/06/2017



Adaptive Approaches

@ Aim: Adapt operators/parameters, usually after a change
@ Hypermutation (Cobb & Grefenstette, 1993): raise the mutation rate
temporarily
@ Hyper-selection (Yang & Tinos, 2008): raise the selection pressure
temporarily
@ Hyper-learning (Yang & Richter, 2009): raise the learning rate for
Population-Based Incremental Learning (PBIL) temporarily

@ Combined: Hyper-selection and hyper-learning with re-start or
hypermutation
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Prediction Approaches

@ For some DOPs, changes exhibit predictable patterns

@ Techniques (forecasting, Kalman filter, etc.) can be used to predict

@ The location of the next optimum after a change
@ When the next change will occur and which environment may appear

@ Some relevant work: see Simdes & Costa (2009)
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Remarks on Enhancing Approaches

©

No clear winner among the approaches
Memory is efficient for cyclic environments

Multi-population is good for tracking competing peaks
@ The search ability will decrease if too many sub-populations

Diversity schemes are usually useful
@ Guided immigrants may be more efficient

Different interaction exists among the approaches
Golden rule: balancing exploration & exploitation over time

¢ ©
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Case Study: GA for Dynamic TSP

@ Dynamic TSP:

@ 144 Chinese cities, 1 geo-stationary saterllite, and 3 mobile satellites
@ Find the path that cycles each city and satellite once with the minimum
length over time

@ Solver: A GA with memory and other schemes

@ More details:
@ C. Li, M. Yang, & L. Kang (2006). SEAL'06, LNCS 4247, pp. 236—243
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Case Study: GAs for Dynamic Routing in MANETSs — 1

@ Shortest path routing problem (SPRP) in a fixed network:
@ Find the shortest path between source and destination in a fixed topology
@ More and more mobile ad hoc networks (MANETS) appear where the
topology keeps changing
@ Dynamic SPRP (DSPRP)in MANETS:
@ Find a series of shortest paths in a series of highly-related network
topologies
@ We model the network dynamics as follows:

@ For each change, a number of nodes are randomly selected to sleep or
wake up based on their current status
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Case Study: GAs for Dynamic Routing in MANETs — 2

@ A specialized GA for the DSPRP:

@ Path-oriented encoding
@ Tournament selection
@ Path-oriented crossover and mutation with repair

@ Enhancements: Immigrants and memory approaches

@ Experimental results:
@ Both immigrants and memory enhance GA’s performance for the DSPRP
in MANETS.
@ Immigrants schemes show their power in acyclic environments
@ Memory related schemes work well in cyclic environments
@ More details:

@ S. Yang, H. Cheng, & F. Wang (2010). IEEE Trans SMC Part C: Appl. &
Rev., 40(1): 52-63
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Case Study: PSO for Continuous DOPs

@ Particle Swarm Optimization (PSO):
@ Inspired by models of swarming and flocking
@ First introduced by Kennedy and Eberhart in 1995
@ PSO has been applied for many static optimization problems

@ Recently, PSO has been applied for continuous DOPs

@ Two aspects to consider for DOPs:

@ Outdated memory. Two solutions:

@ Simply set pbest to the current position

@ Reevaluate pbest and reset it to the current position if current position is better
@ Diversity loss. Three solutions:

@ Introduce diversity after a change
@ Maintain diversity during the run
@ Use multi-swarms
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Multi-swarm PSO for DOPs

@ Clustering PSO (CPSO):

o

© ¢ ¢ ¢ ¢

Training: Move particles toward different promising regions

Clustering: Single linkage hierarchical clustering to create sub-swarms
Local search: Each sub-swarm will search among one peak quickly
Overlapping and convergence check

Strategies to response to changes

Details: Li & Yang, CEC’09; Yang & Li, IEEE Trans Evol Comput, 14(6),
2010

@ Adaptive Multi-Swarm Optimizer (AMSO):

[~
o
o

¢ ¢

Use single linkage hierarchical clustering to create populations

An overcrowding scheme to remove unnecessary populations

A special rule to decide proper moments to increase diversity without
change detection

An adaptive method to create a proper number of populations needed
Details:

@ Li, Yang & Yang (2014), Evol Comput, 22(4): 559-594
@ Lietal (2016), IEEE Trans Evol Comput, 20(4): 590-605
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Case Study: Ant Colony Optimization (ACO) for DOPs

@ ACO mimics the behaviour of ants searching for food
@ ACO was first proposed for TSPs (Dorigo et al., 1996)
@ Generally, ACO was developed to be suitable for graph optimization
problems, such as TSP and VRP
@ The idea was to let ants “walk” on the arcs of the graph while “reading”
and “writing” pheromones until they converge into a path
@ Standard ACO consists of two phases:
@ Forward mode: Construct solutions
@ Backward mode: Pheromone update
@ Conventional ACO cannot adapt well to DOPs due to stagnation
behaviour
@ Once converged, it is hard to escape from the old optimum
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ACO for DOPs: General Comments

@ ACO transfers knowledge via pheromone

o
o

Make sense on slight changes; otherwise, may misguide the search
For severe changes, a global restart is a better choice

@ A global restart of ACO = pheromone re-initialization

@ Moreover, ACO has to maintain adaptability, instead of stagnation
behaviour, to accept knowledge transferred

@ Recently, many approaches developed with ACO for DOPs
(Mavrovouniotis, Li, & Yang 2017)

]

© ¢ ¢ ¢

Pheromone modification after a change (Guntsch & Middendorf, 2001,
Eyckelhof & Snoek, 2002)

Memory-based schemes (Guntsch & Middendorf, 2002)

Hybrid and memetic algorithms (Mavrovouniotis, Muller & Yang, 2017)
Pheromone modification during execution (Mavrovouniotis & Yang, 2013a)
Multi-colony schemes (Mavrovouniotis, Yang & Yao, 2014)
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ACO with Pheromone Strategies: Adapting Evaporation

@ Pheromone evaporation is an adaptation mechanism in ACO
@ Different evaporation rates perform better for different DOPs

@ Solution = Adaptive pheromone evaporation rate
@ Starts with an initial p and modifies it as follows:
@ When stagnation behaviour is detected, increase p to help ants forget
current solution; otherwise, decrease p to avoid randomization
@ A X-branching method is used to detect stagnation behaviour
@ Performs better than fixed evaporation rate
@ However, a restart strategy performs better for severe changes

@ More details:
@ Mavrovouniotis & Yang (2013a) for both DTSP and DVRP

Shengxiang Yang (De Montfort University) Tutorial: EC for DOPs IEEE CEC 2017, 05/06/2017



ACO with Pheromone Strategies: Immigrants

9@ Integrate immigrants schemes to ACO
@ A short-term memory is used to store the best k ants and generated
immigrant ants
@ The memory is updated every iteration
@ No ant can survive in more than one iteration

@ Pheromone trails are synchronized with short-term memory
@ Any changes to the memory applied also to pheromone trails

@ Pheromone evaporation is not used because pheromone trails are
removed directly

@ More details:
@ Mavrovouniotis & Yang (2013b) for DTSPs
@ Mavrovouniotis & Yang (2015) for DVRPs
@ Eaton, Mavrovouniotis & Yang (2016) for the dynamic railway junction
rescheduling problem
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Theoretical Development

@ So far, mainly empirical studies
@ Theoretical analysis has just appeared

@ Runtime analysis:
@ Stanhope & Daida (1999) first analyzed a (1+1) EA on the dynamic bit
matching problem (DBMP)
@ Droste (2002) analyzed the first hitting time of a (1+1) ES on the DBMP
@ Rohlfshagen et al. (2010) analyzed how the magnitude and speed of
change may affect the performance of the (1+1) EA on two functions
constructed from the XOR DOP generator

@ Analysis of dynamic fitness landscape:
@ Branke et al. (2005) analyzed the changes of fitness landscape due to
changes of the underlying problem instance
@ Richter (2010) analyzed the properties of spatio-temporal fithess
landscapes constructed from Coupled Map Lattices (CML)
@ Tinos and Yang (2010, 2014) analyzed the properties of the XOR DOP
generator based on the dynamical system approach of a GA
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EC for

Dynamic Multi-objective Optimization

@ So far, mainly dynamic single-objective optimization

@ Dynamic multi-objective optimization problems (DMOPs): even more
challenging

@ Recently, rising interest in studying EC for DMOPs

]

o

o

Farina et al. (2004) classified DMOPs based on the changes on the Pareto
optimal solutions

Goh & Tan (2009) proposed a competitive-cooperative coevolutionary
algorithm for DMOPs

Zeng et al. (2006) proposed a dynamic orthogonal multi-objective EA
(DOMOEA) to solve a DMOP with continuous decision variables
Zhang & Qian (2011) proposed an artificial immune system to solve
constrained DMOPs

Jiang & Yang (2017a) proposed a new benchmark MDOP generator
Jiang & Yang (2017b) proposed a Steady-Generational EA (SGEA) for
DMOPs

Ruan et al. (2017) analyzed the effect of diversity maintenance on
prediction for DMOPs

Eaton et al. (2017) applied ACO for the dynamic multi-objective railway
junction rescheduling problem
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Challenging Issues

@ Detecting changes:
@ Most studies assume that changes are easy to detect or visible to an
algorithm whenever occurred
@ In fact, changes are difficult to detect for many DOPs
@ Understanding the characteristics of DOPs:
@ What characteristics make DOPs easy or difficult?
@ The work has started, but needs much more effort
@ Analysing the behaviour of EAs for DOPs:
@ Requiring more theoretical analysis tools
@ Addressing more challenging DOPs and EC methods
@ Big question: Which EC methods for what DOPs?
@ Real world applications:
@ How to model real-world DOPs?
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Future Work

@ The domain has attracted a growing interest recently
@ But, far from well-studied

@ New approaches needed: esp. hybrid approaches
@ Theoretical analysis: greatly needed
@ EC for DMOPs: deserves much more effort

@ Real world applications: also greatly needed
@ Fields: logistics, transport, MANETS, data streams, social networks, ...

TR s
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@ EC for DOPs: challenging but important

@ The domain is still young and active:

@ More challenges to be taken regarding approaches, theory, and
applications

@ More young researchers are greatly welcome!
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