Evolutionary Computation for Dynamic Optimization Problems

Shengxiang Yang

Centre for Computational Intelligence School of Computer Science and Informatics De Montfort University, United Kingdom Email: syang@dmu.ac.uk http://www.tech.dmu.ac.uk/~syang

Tutorial presented at the 2017 IEEE Congress on Evolutionary Computation (IEEE CEC 2017), Donostia-San Sebastian, Spain, 5-8 June, 2017

Copyright is held by the author/owner(s)

Presenter — Shengxiang Yang

- Education and career history:
 - PhD, Northeastern University, China, 1999
 - Worked at King's College London, University of Leicester, and Brunel University, 1999-2012
 - Joined De Montfort University (DMU) as Professor in Computational Intelligence (CI) in July 2012
 - Director of Centre for Computational Intelligence (CCI)

- Research interests:
 - Evolutionary Computation (EC) and nature-inspired computation
 - Dynamic optimisation and multi-objective optimisation
 - Relevant real-world applications
- Over 230 publications and £2M funding for research
- AE/Editorial Board Member for 8 journals, including IEEE Trans Cybern, Evol Comput, Inform Sci, Neurocomputing, and Soft Comput
- Chair of two IEEE CIS Task Forces
 - EC in Dynamic and Uncertain Environments
 - Intelligent Network Systems

Centre for Computational Intelligence (CCI)

- CCI (www.cci.dmu.ac.uk):
 - Mission: Developing fundamental theoretical and practical solutions to real-world problems using a variety of CI paradigms
 - Members: 18 staff, several research fellows, 30+ PhDs, visiting researchers
 - Themes: EC, fuzzy logic, neural networks, data mining, robotics, game ...
- Funding:
 - Research Councils/Charities: EPSRC, ESRC, EU FP7 & Horizon 2020, Royal Academy of Engineering, Royal Society, Innovate UK, KTP, Innovation Fellowships, Nuffield Trust, etc.
 - Government: Leicester City Council, DTI
 - Industries: Lachesis, EMDA, RSSB, Network Rail, etc.
- Collaborations:
 - Universities: UK, USA, Spain, and China
 - Industries and local governments
- Teaching/Training:
 - DTP-IS: University Doctor Training Programme in Intelligent Systems
 - MSc Intelligent Systems, MSc Intelligent Systems & Robotics
 - BSc Artificial Intelligence with Robotics
- YouTube page: http://www.youtube.com/thecci

Outline of the Tutorial

Part I: Fundamentals

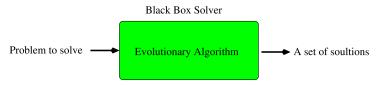
- Introduction to evolutionary computation (EC)
- EC for dynamic optimization problems (DOPs): Concept and motivation
- Benchmark and test problems
- Performance measures

Part II: Approaches, Issues and Future Work

- EC enhancement approaches for DOPs
- Case studies
- Relevant issues
- Future work

What Is Evolutionary Computation (EC)?

- EC encapsulates a class of stochastic optimization algorithms, dubbed Evolutionary Algorithms (EAs)
- An EA is an optimisation algorithm that is
 - Generic: a black-box tool for many problems
 - Population-based: evolves a population of candidate solutions
 - Stochastic: uses probabilistic rules
 - Bio-inspired: uses principles inspired from biological evolution



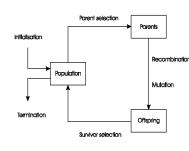
Design and Framework of an EA

Given a problem to solve, first consider two key things:

- Representation of solution into individual
- Evaluation or fitness function

Then, design the framework of an EA:

- Initialization of population
- Evolve the population
 - Selection of parents
 - Variation operators (recombination & mutation)
 - Selection of offspring into next generation
- Termination condition: a given number of generations

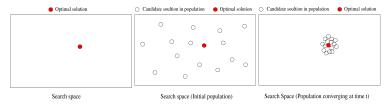


EC Applications

- EAs are easy-to-use: No strict requirements to problems
- Widely used for optimisation and search problems
 - Financial and economical systems
 - Transportation and logistics systems
 - Industry engineering
 - Automatic programming, art and music design
 -

EC for Optimisation Problems

- Traditionally, research on EAs has focused on static problems
 - Aim to find the optimum quickly and precisely



- But, many real-world problems are dynamic optimization problems (DOPs), where changes occur over time
 - In transport networks, travel time between nodes may change
 - In logistics, customer demands may change

What Are DOPs?

 In general terms, "optimization problems that change over time" are called dynamic problems/time-dependent problems

$$F = f(\vec{x}, \vec{\phi}, t)$$

- $-\vec{x}$: decision variable(s); $\vec{\phi}$: parameter(s); t: time
- DOPs: special class of dynamic problems that are solved online by an algorithm as time goes by

Why DOPs Challenge EC?

- For DOPs, optima may move over time in the search space
 - Challenge: need to track the moving optima over time

- DOPs challenge traditional EAs
 - Once converged, hard to escape from an old optimum

Why EC for DOPs?

- Many real-world problems are DOPs
- EAs, once properly enhanced, are good choice
 - Inspired by natural/biological evolution, always in dynamic environments
 - Intrinsically, should be fine to deal with DOPs
- Many events on EC for DOPs recently

Relevant Events

- Books (Monograph or Edited):
 - Yang & Yao, 2013; Alba et al., 2013; Yang et al., 2007; Morrison, 2004;
 Weicker, 2003; Branke, 2002
- PhD Theses:
 - Jiang, 2017; Mavrovouniotis, 2013; Helbig, 2012; du Plessis, 2012; Li, 2011; Nguyen, 2011; Simoes, 2010
- Journal special issues:
 - Neri & Yang, 2010; Yang et al., 2006; Jin & Branke, 2006; Branke, 2005
- Workshops and conference special sessions:
 - EvoSTOC (2004–2017): part of Evo*
 - ECiDUE (2004–2017): part of IEEE CEC
 - EvoDOP ('99, '01, '03, '05, '07, '09): part of GECCO
- IEEE Symposium on CIDUE (2011, 2013-2017)
- IEEE Competitions: within IEEE CEC'09, CEC'12 & CEC'14

Benchmark and Test DOPs

- Basic idea: change base static problem(s) to create DOPs
- Real space:
 - Switch between different functions
 - Move/reshape peaks in the fitness landscape
- Binary space:
 - Switch between > 2 states of a problem: knapsack
 - Use binary masks: XOR DOP generator (Yang & Yao'05)
- Combinatorial space:
 - Change decision variables: item weights/profits in knapsack problems
 - Add/delete decision variables: new jobs in scheduling, nodes added/deleted in network routing problems

The DF1 Generator

- Proposed by Morrison & De Jong (1999)
- The base landscape in the D-dimensional real space:

$$f(\vec{x}) = \max_{i=1,\ldots,p} \left[H_i - R_i \times \sqrt{\sum_{j=1}^{D} (x_j - X_{ij})^2} \right]$$

- $-\vec{x} = (x_1, \dots, x_D)$: a point in the landscape; p: number of peaks $-H_i$, R_i , $X_i = (X_{i1}, \dots, X_{iD})$: height, slope, center of peak i
- The dynamics is controlled by a logistics function:

$$\Delta_t = A \cdot \Delta_{t-1} \cdot (1 - \Delta_{t-1})$$

- A ∈ [1.0, 4.0]: a constant; Δ_t : step size of changing a parameter

Moving Peaks Benchmark (MPB) Problem

- Proposed by Branke (1999)
- The MPB problem in the *D*-dimensional space:

$$F(\vec{x},t) = \max_{i=1,...,p} \frac{H_i(t)}{1 + W_i(t) \sum_{j=1}^{D} (x_j(t) - X_{ij}(t))^2}$$

 $-W_i(t), H_i(t), X_i(t) = \{X_{i1} \cdots X_{iD}\}$: height, width, location of peak i at t

The dynamics:

$$H_i(t) = H_i(t-1) + height_severity * \sigma$$
 $W_i(t) = W_i(t-1) + width_severity * \sigma$
 $\vec{v}_i(t) = \frac{s}{\left|\vec{r} + \vec{v}_i(t-1)\right|}((1-\lambda)\vec{r} + \lambda \vec{v}_i(t-1))$
 $\vec{X}_i(t) = \vec{X}_i(t)(t-1) + \vec{v}_i(t)$

- $-\sigma \sim N(0,1)$; λ : correlated parameter
- $-\vec{v}_i(t)$: shift vector, which combines random vector \vec{r} and $\vec{v}_i(t-1)$ and is normalized to the shift length s

Dynamic Knapsack Problems (DKPs)

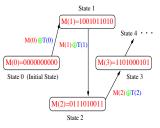
- Static knapsack problem:
 - Given n items, each with a weight and a profit, and a knapsack with a fixed capacity, select items to fill up the knapsack to maximize the profit while satisfying the knapsack capacity constraint
- The DKP:
 - Constructed by changing weights and profits of items, and/or knapsack capacity over time as:

Max
$$f(\vec{x}(t), t) = \sum_{i=1}^{n} p_i(t) \cdot x_i(t)$$
, s. t.: $\sum_{i=1}^{n} w_i(t) \cdot x_i(t) \leq C(t)$

- $-\vec{x}(t) \in \{0,1\}^n$: a solution at time t
- $-x_i(t) \in \{0,1\}$: indicates whether item *i* is included or not
- $-p_i(t)$ and $w_i(t)$: profit and weight of item i at t
- -C(t): knapsack capacity at t

The XOR DOP Generator

- The **XOR DOP generator** can create DOPs from any binary $f(\vec{x})$ by an XOR operator " \oplus " (Yang, 2003; Yang & Yao, 2005)
- Suppose the environment changes every au generations
- For each environmental period $k = \lfloor t/\tau \rfloor$, do:



- ① Create a template T_k with $\rho * I$ ones
- ② Create a mask $\vec{M}(k)$ incrementally

$$\vec{M}(0) = \vec{0}$$
 (the initial state)
 $\vec{M}(k+1) = \vec{M}(k) \oplus \vec{T}(k)$

Evaluate an individual:

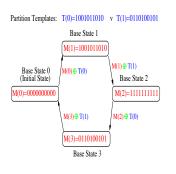
$$f(\vec{x},t)=f(\vec{x}\oplus\vec{M}(k))$$

T(0)=1001011010 T(1)=1110001001 T(2)=1010010110

 \bullet τ and ρ controls the speed and severity of change respectively

Constructing Cyclic Dynamic Environments

Can extend the XOR DOP generator to create cyclic environments:



- **(a)** Construct K templates $\vec{T}(0), \dots, \vec{T}(K-1)$
 - Form a partition of the search space
 - Each contains $\rho \times I = I/K$ ones
- ② Create 2K masks $\vec{M}(i)$ as base states

$$\vec{M}(0) = \vec{0}$$
 (the initial state)

$$\vec{M}(i+1) = \vec{M}(i) \oplus \vec{T}(i\%K), i = 0, \cdots, 2K-1$$

Output Cycle among $\vec{M}(i)$'s every τ generations

$$f(\vec{x},t)=f(\vec{x}\oplus\vec{M}(I_t))=f(\vec{x}\oplus\vec{M}(k\%(2K)))$$

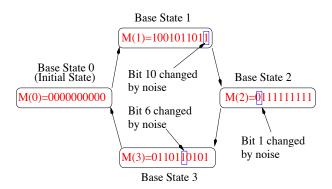
 $-k = |t/\tau|$: environmental index

 $-I_t = k\%(2K)$: mask index

Constructing Cyclic Environments with Noise

We can also construct cyclic environments with noise:

 Each time before a base state is entered, it is bitwise changed with a small probability



Dynamic Traveling Salesman Problems

- Stationary traveling salesman problem (TSP):
 - Given a set of cities, find the shortest route that visits each city once and only once
- Dynamic TSP (DTSP):
 - May involve dynamic cost (distance) matrix

$$D(t) = \{d_{ij}(t)\}_{n*n}$$

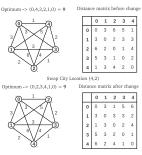
- $-d_{ij}(t)$: cost from city *i* to *j*; *n*: the number of cities
- The aim is to find a minimum-cost route containing all cities at time t
- DTSP can be defined as f(x, t):

$$f(x,t) = Min(\sum_{i=1}^{n} d_{x_i,x_{i+1}}(t))$$

where $x_i \in 1, \dots, n$. If $i \neq j$, $x_i \neq x_i$, and $x_{n+1} = x_1$

Dynamic Permutation Benchmark Generator

 The dynamic benchmark generator for permutation-encoded problems (DBGP) can create a DOP from any stationary TSP/VRP by swapping objects:

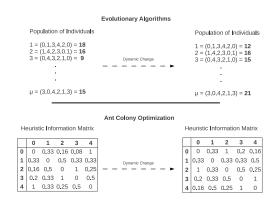


- Generate a random vector $\vec{r}(T)$ that contains all objects every f iterations
- ② Generate another randomly re-order vector $\vec{r'}(T)$ that contains only the first $m \times n$ objects of $\vec{r}(T)$
- Modify the encoding of the problem instance with $m \times n$ pairwise swaps

More details: M. Mavrovouniotis, S. Yang, & X. Yao (2012). PPSN XII, Part II, LNCS 7492, pp. 508–517

Effect on Algorithms

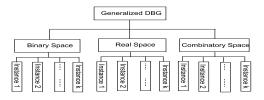
- Similar with the XOR DOP generator, DBGP shifts the population of an alg. to new location in the fitness landscape
- The individual with the same encoding as before a change will have a different cost after the change



Can extend for cyclic and cyclic with noise environments

Generalized DOP Benchmark Generator (GDBG)

Proposed by Li & Yang (2008), GDBG uses the model below:



In GDBG, DOPs are defined as:

$$F = f(x, \phi, t),$$

- $-\phi$: system control parameter
- Dynamism results from tuning ϕ of the current environment

$$\phi(t+1) = \phi(t) \oplus \Delta\phi$$

- $-\Delta\phi$: deviation from the current control parameter(s)
- The new environment at t + 1 is as follows:

$$f(\mathbf{x}, \phi, t+1) = f(\mathbf{x}, \phi(t) \oplus \Delta \phi, t)$$

GDBG: Dynamic Change Types

- Change types:
 - **Small step:** $\Delta \phi = \alpha \cdot ||\phi|| \cdot rand()$
 - 2 Large step: $\Delta \phi = \|\phi\| \cdot (\alpha + (1 \alpha) rand())$
 - **Solution** Random: $\Delta \phi = \|\phi\| \cdot rand()$
 - Ohaotic: $\phi(t+1) = A \cdot \phi(t) \cdot (1 \phi(t)/\|\phi\|)$
 - Securrent: $\phi(t+1) = \phi(t\%P)$
 - **1** Recurrent with nosy: $\phi(t+1) = \phi(t\%P) + \alpha \cdot ||\phi|| \cdot rand()$
 -
- More details:
 - C. Li & S. Yang (2008). SEAL'08, LNCS 5361, pp. 391–400

DOPs: Classification

Classification criteria:

- Time-linkage: Does the future behaviour of the problem depend on the current solution?
- Predictability: Are changes predictable?
- Visibility: Are changes visible or detectable
- Cyclicity: Are changes cyclic/recurrent in the search space?
- Factors that change: objective, domain/number of variables, constraints, and/or other parameters

DOPs: Common Characteristics

Common characteristics of DOPs in the literature:

- Most DOPs are non time-linkage problems
- For most DOPs, changes are assumed to be detectable
- In most cases, the objective function is changed
- Many DOPs have unpredictable changes
- Most DOPs have cyclic/recurrent changes

Performance Measures

- For EC for stationary problems, 2 key performance measures
 - Convergence speed
 - Success rate of reaching optimality
- For EC for DOPs, over 20 measures (Nguyen et al., 2012)
 - Optimality-based performance measures
 - Collective mean fitness or mean best-of-generation
 - Accuracy
 - Adaptation
 - Offline error and offline performance
 - Mean distance to optimum at each generation
 -
 - Behaviour-based performance measures
 - Reactivity
 - Stability
 - Robustness
 - Satisficability
 - Diversity measures
 - .

Performance Measures: Examples

Collective mean fitness (mean best-of-generation):

$$\overline{F}_{BOG} = \frac{1}{G} \times \sum\nolimits_{i=1}^{i=G} (\frac{1}{N} \times \sum\nolimits_{j=1}^{j=N} F_{BOG_{ij}})$$

- − G and N: number of generations and runs, resp.
- $-F_{BOG_{ii}}$: best-of-generation fitness of generation i of run j
- Adaptation performance (Mori et al., 1997)

$$Ada = \frac{1}{T} \sum_{t=1..T} (f_{best}(t)/f_{opt}(t))$$

Accuracy (Trojanowski and Michalewicz, 1999)

$$Acc = \frac{1}{K} \sum_{i=1..K} (f_{best}(i) - f_{opt}(i))$$

 $-f_{best}(i)$: best fitness for environment i (best before change)

Part II: Approaches, Issues and Future Work

- EC enhancement approaches for DOPs
- Case studies
- Relevant issues
- Future work

EC for DOPs: First Thinking

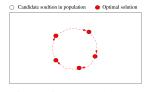
- Recap: traditional EAs are not good for DOPs
- Goal: to track the changing optimum
- How about restarting an EA after a change?
 - Natural and easy choice
 - But, not good choice because:
 - It may be inefficient, wasting computational resources
 It may lead to very different solutions before and after a change.
 For real-world problems, we may expect solutions to remain similar
- Extra approaches are needed to enhance EAs for DOPs

EC for DOPs: General Approaches

- Many approaches developed to enhance EAs for DOPs
- Typical approaches:
 - Memory: store and reuse useful information
 - Diversity: handle convergence directly
 - Multi-population: co-operate sub-populations
 - Adaptive: adapt generators and parameters
 - Prediction: predict changes and take actions in advance
- They have been applied to different EAs for DOPs

Memory Approaches

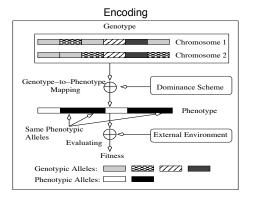
Cyclic DOPs: change cyclically among a fixed set of states



Search space (Optimum moves cyclically)

- Memory works by storing and reusing useful information
- Two classes regarding how to store information
 - Implicit memory: uses redundant representations
 - Multiploidy and dominance (Ng & Wong, 1995; Lewis et al., 1998)
 - Dualism mechanisms (Yang, 2003; Yang & Yao, 2005)
 - Explicit memory: uses extra space to store information

Implicit Memory: Diploid Genetic Algorithms



Dominance Scheme

	0	О	1	i
0	0	0	0/1	0
О	0	0	1	0/1
1	0/1	1	1	1
i	0	0/1	1	1

Ng & Wong (1995)

	Α	В	С	D
Α	0	0	0	1
В	0	0	0	1
С	0	0	1	1
D	1	1	1	1

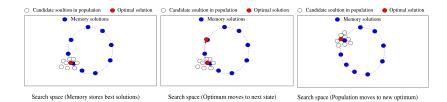
Lewis et al. (1998)

- Each individual has a pair of chromosomes
- Dominance scheme maps genotype to phenotype
- Dominance scheme may change or be adaptive (Uyar & Harmanci, 2005)

Explicit Memory Approaches

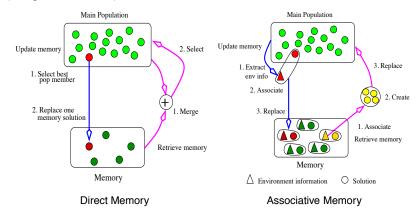
Basic idea: use extra memory

- With time, store useful information of the pop into memory
- When a change occurs, use memory to track new optimum



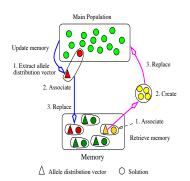
Explicit Memory: Direct vs Associative

- Direct memory: store good solutions (Branke, 1999)
- Associative memory: store environmental information + good solutions (Yang & Yao, 2008)



Associative Memory Based Genetic Algorithm

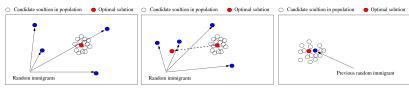
Idea: Use allele distribution (AD) \vec{D} to represent environmental info.



- Use memory to store $\langle \vec{D}, S \rangle$ pairs
- Update memory by similarity policy
- Re-evaluate memory every generation. If change detected
 - Extract best memory AD: \vec{D}_M
 - Create solutions by sampling \vec{D}_M
 - Replace them into the pop randomly
- Details:
 - S. Yang (2006). *EvoWorkshops'06*, pp. 788–799

Diversity Approaches: Random Immigrants

- Convergence is the key problem in metaheuristics for DOPs
- Random immigrants:
 - Each generation, insert some random individuals (called random immigrants) into the population to maintain diversity
 - When optimum moves, random immigrants nearby take action to draw the pop to the new optimum

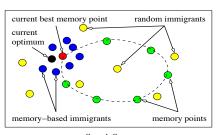


Search Space (Optimum moved at time t+1)

Search Space (Population moves to new optimum)

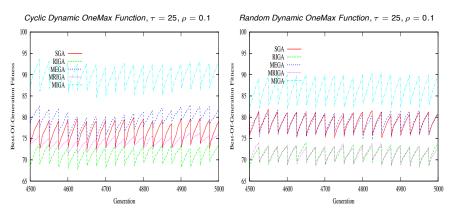
Memory-Based Immigrants

- Random immigrants maintain the diversity while memory adapts an algorithm directly to new environments
- Memory-based immigrants: uses memory to guide immigrants towards current environment
 - Re-evaluate the memory every generation
 - Retrieve the best memory point $B_M(t)$ as the base
 - Generate immigrants by mutating $B_M(t)$ with a prob.
 - Replace worst members in the population by these immigrants



Search Space

Experimental Results: Immigrants Based GAs



- Memory-based immigrants GA (MIGA) significantly beats other GAs
- More details:
 - S. Yang (2008). Evol. Comput., 16(3): 385-416

Hybrid Immigrants Approach

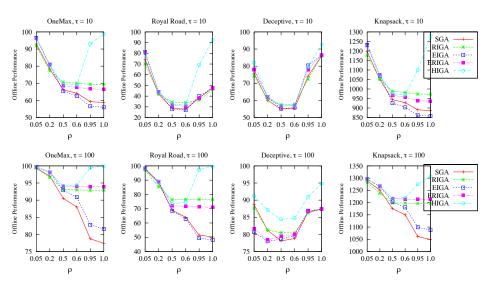
- Combines elitism, dualism and random immigrants ideas
- Dualism: Given $\vec{x} = (x_1, \dots, x_l) \in \{0, 1\}^l$, its dual is defined as

$$\vec{x}^d = dual(\vec{x}) = (x_1^d, \cdots, x_l^d) \in \{0, 1\}^l$$

where $x_i^d = 1 - x_i$

- Each generation t, select the best individual from previous generation, E(t-1), to generate immigrants
 - Elitism-based immigrants: Generate a set of individuals by mutating E(t-1) to address slight changes
 - Dualism-based immigrants: Generate a set of individuals by mutating the dual of E(t-1) to address significant changes
 - Random immigrants: Generate a set of random individuals to address medium changes
 - Replace these immigrants into the population
- More details:
 - S. Yang & R. Tinos (2007). Int. J. of Autom. & Comp., 4(3): 243-254

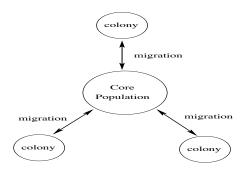
Experimental Results: Hybrid Immigrants GA



Hybrid immigrants improve GA's performance for DOPs efficiently

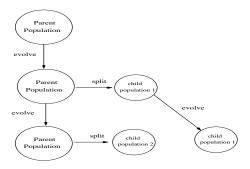
Multi-Populations: Shifting Balance

- Multi-population scheme uses co-operating sub-populations
- Shifting Balance GA (Oppacher & Wineberg, 1999):
 - A core population exploits the promising area
 - Several colonies explore the search space



Multi-Populations: Self-Organizing Scouts

- Self-organizing scouts (SOS) GA (Branke et al., 2000)
 - The parent population explores the search space
 - A child population is split under certain conditions
 - Child populations search limited promising areas



Adaptive Approaches

- Aim: Adapt operators/parameters, usually after a change
 - Hypermutation (Cobb & Grefenstette, 1993): raise the mutation rate temporarily
 - Hyper-selection (Yang & Tinos, 2008): raise the selection pressure temporarily
 - Hyper-learning (Yang & Richter, 2009): raise the learning rate for Population-Based Incremental Learning (PBIL) temporarily
- Combined: Hyper-selection and hyper-learning with re-start or hypermutation

Prediction Approaches

- For some DOPs, changes exhibit predictable patterns
- Techniques (forecasting, Kalman filter, etc.) can be used to predict
 - The location of the next optimum after a change
 - When the next change will occur and which environment may appear
- Some relevant work: see Simões & Costa (2009)

Remarks on Enhancing Approaches

- No clear winner among the approaches
- Memory is efficient for cyclic environments
- Multi-population is good for tracking competing peaks
 - The search ability will decrease if too many sub-populations
- Diversity schemes are usually useful
 - Guided immigrants may be more efficient
- Different interaction exists among the approaches
- Golden rule: balancing exploration & exploitation over time

Case Study: GA for Dynamic TSP

- Dynamic TSP:
 - 144 Chinese cities, 1 geo-stationary saterllite, and 3 mobile satellites
 - Find the path that cycles each city and satellite once with the minimum length over time
- Solver: A GA with memory and other schemes
- More details:
 - C. Li, M. Yang, & L. Kang (2006). SEAL'06, LNCS 4247, pp. 236–243



Case Study: GAs for Dynamic Routing in MANETs – 1

- Shortest path routing problem (SPRP) in a fixed network:
 - Find the shortest path between source and destination in a fixed topology
- More and more mobile ad hoc networks (MANETs) appear where the topology keeps changing
- Dynamic SPRP (DSPRP)in MANETs:
 - Find a series of shortest paths in a series of highly-related network topologies
- We model the network dynamics as follows:
 - For each change, a number of nodes are randomly selected to sleep or wake up based on their current status

Case Study: GAs for Dynamic Routing in MANETs – 2

- A specialized GA for the DSPRP:
 - Path-oriented encoding
 - Tournament selection
 - Path-oriented crossover and mutation with repair
- Enhancements: Immigrants and memory approaches
- Experimental results:
 - Both immigrants and memory enhance GA's performance for the DSPRP in MANETs.
 - Immigrants schemes show their power in acyclic environments
 - Memory related schemes work well in cyclic environments
- More details:
 - S. Yang, H. Cheng, & F. Wang (2010). IEEE Trans SMC Part C: Appl. & Rev., 40(1): 52–63

Case Study: PSO for Continuous DOPs

- Particle Swarm Optimization (PSO):
 - Inspired by models of swarming and flocking
 - First introduced by Kennedy and Eberhart in 1995
 - PSO has been applied for many static optimization problems
- Recently, PSO has been applied for continuous DOPs
- Two aspects to consider for DOPs:
 - Outdated memory. Two solutions:
 - Simply set pbest to the current position
 - Reevaluate pbest and reset it to the current position if current position is better
 - Diversity loss. Three solutions:
 - Introduce diversity after a change
 - Maintain diversity during the run
 - Use multi-swarms

Multi-swarm PSO for DOPs

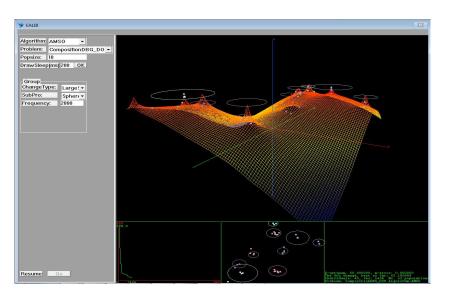
Clustering PSO (CPSO):

- Training: Move particles toward different promising regions
- Clustering: Single linkage hierarchical clustering to create sub-swarms
- Local search: Each sub-swarm will search among one peak quickly
- Overlapping and convergence check
- Strategies to response to changes
- Details: Li & Yang, CEC'09; Yang & Li, IEEE Trans Evol Comput, 14(6), 2010

Adaptive Multi-Swarm Optimizer (AMSO):

- Use single linkage hierarchical clustering to create populations
- An overcrowding scheme to remove unnecessary populations
- A special rule to decide proper moments to increase diversity without change detection
- An adaptive method to create a proper number of populations needed
- Details:
 - Li, Yang & Yang (2014), Evol Comput, 22(4): 559–594
 - Li et al. (2016), IEEE Trans Evol Comput, 20(4): 590–605

Demo: CPSO & AMSO for DOPs



Case Study: Ant Colony Optimization (ACO) for DOPs

- ACO mimics the behaviour of ants searching for food
- ACO was first proposed for TSPs (Dorigo et al., 1996)
- Generally, ACO was developed to be suitable for graph optimization problems, such as TSP and VRP
- The idea was to let ants "walk" on the arcs of the graph while "reading" and "writing" pheromones until they converge into a path
- Standard ACO consists of two phases:
 - Forward mode: Construct solutions
 - Backward mode: Pheromone update
- Conventional ACO cannot adapt well to DOPs due to stagnation behaviour
 - Once converged, it is hard to escape from the old optimum

ACO for DOPs: General Comments

- ACO transfers knowledge via pheromone
 - Make sense on slight changes; otherwise, may misguide the search
 - For severe changes, a global restart is a better choice
 - ullet A global restart of ACO \Rightarrow pheromone re-initialization
- Moreover, ACO has to maintain adaptability, instead of stagnation behaviour, to accept knowledge transferred
- Recently, many approaches developed with ACO for DOPs (Mavrovouniotis, Li, & Yang 2017)
 - Pheromone modification after a change (Guntsch & Middendorf, 2001, Eyckelhof & Snoek, 2002)
 - Memory-based schemes (Guntsch & Middendorf, 2002)
 - Hybrid and memetic algorithms (Mavrovouniotis, Muller & Yang, 2017)
 - Pheromone modification during execution (Mavrovouniotis & Yang, 2013a)
 - Multi-colony schemes (Mavrovouniotis, Yang & Yao, 2014)

ACO with Pheromone Strategies: Adapting Evaporation

- Pheromone evaporation is an adaptation mechanism in ACO
- Different evaporation rates perform better for different DOPs
- Solution ⇒ Adaptive pheromone evaporation rate
 - Starts with an initial ρ and modifies it as follows:
 - When stagnation behaviour is detected, increase ρ to help ants forget current solution; otherwise, decrease ρ to avoid randomization
 - A λ -branching method is used to detect stagnation behaviour
- Performs better than fixed evaporation rate
 - However, a restart strategy performs better for severe changes
- More details:
 - Mavrovouniotis & Yang (2013a) for both DTSP and DVRP

ACO with Pheromone Strategies: Immigrants

- Integrate immigrants schemes to ACO
- A short-term memory is used to store the best k ants and generated immigrant ants
- The memory is updated every iteration
 - No ant can survive in more than one iteration
- Pheromone trails are synchronized with short-term memory
 - Any changes to the memory applied also to pheromone trails
- Pheromone evaporation is not used because pheromone trails are removed directly
- More details:
 - Mavrovouniotis & Yang (2013b) for DTSPs
 - Mavrovouniotis & Yang (2015) for DVRPs
 - Eaton, Mavrovouniotis & Yang (2016) for the dynamic railway junction rescheduling problem

Theoretical Development

- So far, mainly empirical studies
- Theoretical analysis has just appeared
- Runtime analysis:
 - Stanhope & Daida (1999) first analyzed a (1+1) EA on the dynamic bit matching problem (DBMP)
 - Droste (2002) analyzed the first hitting time of a (1+1) ES on the DBMP
 - Rohlfshagen et al. (2010) analyzed how the magnitude and speed of change may affect the performance of the (1+1) EA on two functions constructed from the XOR DOP generator
- Analysis of dynamic fitness landscape:
 - Branke et al. (2005) analyzed the changes of fitness landscape due to changes of the underlying problem instance
 - Richter (2010) analyzed the properties of spatio-temporal fitness landscapes constructed from Coupled Map Lattices (CML)
 - Tinos and Yang (2010, 2014) analyzed the properties of the XOR DOP generator based on the dynamical system approach of a GA

EC for Dynamic Multi-objective Optimization

- So far, mainly dynamic single-objective optimization
- Dynamic multi-objective optimization problems (DMOPs): even more challenging
- Recently, rising interest in studying EC for DMOPs
 - Farina et al. (2004) classified DMOPs based on the changes on the Pareto optimal solutions
 - Goh & Tan (2009) proposed a competitive-cooperative coevolutionary algorithm for DMOPs
 - Zeng et al. (2006) proposed a dynamic orthogonal multi-objective EA (DOMOEA) to solve a DMOP with continuous decision variables
 - Zhang & Qian (2011) proposed an artificial immune system to solve constrained DMOPs
 - Jiang & Yang (2017a) proposed a new benchmark MDOP generator
 - Jiang & Yang (2017b) proposed a Steady-Generational EA (SGEA) for DMOPs
 - Ruan et al. (2017) analyzed the effect of diversity maintenance on prediction for DMOPs
 - Eaton et al. (2017) applied ACO for the dynamic multi-objective railway junction rescheduling problem

Challenging Issues

- Detecting changes:
 - Most studies assume that changes are easy to detect or visible to an algorithm whenever occurred
 - In fact, changes are difficult to detect for many DOPs
- Understanding the characteristics of DOPs:
 - What characteristics make DOPs easy or difficult?
 - The work has started, but needs much more effort
- Analysing the behaviour of EAs for DOPs:
 - Requiring more theoretical analysis tools
 - Addressing more challenging DOPs and EC methods
 - Big question: Which EC methods for what DOPs?
- Real world applications:
 - How to model real-world DOPs?

Future Work

- The domain has attracted a growing interest recently
 - But, far from well-studied
- New approaches needed: esp. hybrid approaches
- Theoretical analysis: greatly needed
- EC for DMOPs: deserves much more effort
- Real world applications: also greatly needed
 - Fields: logistics, transport, MANETs, data streams, social networks, ...

Summary

- EC for DOPs: challenging but important
- The domain is still young and active:
 - More challenges to be taken regarding approaches, theory, and applications
- More young researchers are greatly welcome!

Acknowledgements

- Two EPSRC funded projects on EC for DOPs
 - "EAs for DOPs: Design, Analysis and Applications"
 - Linked project among Brunel Univ. (Univ. of Leicester before 7/2010), Univ. of Birmingham, BT, and Honda
 - Funding/Duration: over £600K / 3.5 years (1/2008–7/2011)
 - http://gtr.rcuk.ac.uk/project/B807434B-E9CA-41C7-B3AF-567C38589BAC
 - "EC for Dynamic Optimisation in Network Environments"
 - Linked project among DMU, Univ. of Birmingham, RSSB, and Network Rail
 - Funding/Duration: ~£1M / 4.5 years (2/2013–8/2017)
 - http://gtr.rcuk.ac.uk/project/C43F34D3-16F1-430B-9E1F-483BBADCD8FA
- Research team members:
 - Research Fellows: Dr. Hui Cheng, Dr. Crina Grosan, Dr. Changhe Li, Dr. Michalis Mavrovouniotis, Dr. Yong Wang, etc.
 - PhD students: Changhe Li, Michalis Mavrovouniotis, Shouyong Jiang, Jayne Eaton, Hongfeng Wang, etc.
- Research cooperators:
 - Prof. Xin Yao, Prof. Juergen Branke, Prof. Jinliang Ding, Dr. Renato Tinos,
 Dr. Hendrik Richter, Dr. Trung Thanh Nguyen, etc.

Relevant Information

- IEEE CIS Task Force on EC in Dynamic and Uncertain Environments
 - http://www.tech.dmu.ac.uk/~syang/IEEE ECIDUE.html
 - Maintained by Shengxiang Yang
- Source codes:
 - http://www.tech.dmu.ac.uk/~syang/publications.html
- IEEE Competitions:
 - 2009 Competition on EC in Dynamic & Uncertain Environments: http://www.cs.le.ac.uk/people/syang/ECiDUE/ECiDUE-Competition09
 - 2012 Competition on EC for DOPs: http://people.brunel.ac.uk/~csstssy/ECDOP-Competition12.html

References - 1

- E. Alba, A. Nakib, & P. Siarry (2013). Metaheuristics for Dynamic Optimization. Springer
- J. Branke (1999). Memory enhanced evolutionary algorithms for changing optimization problems. CEC'99, pp. 1875–1882
- J. Branke (2002). Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers
- J. Branke, E. Salihoglu, S. Uyar (2005). Towards an analysis of dynamic environments. GECCO'05, pp. 1433–1439
- H.G. Cobb, J.J. Grefenstette (1993). Genetic algorithms for tracking changing environments. *Proc. ICGA*, pp. 523–530
- C. Cruz, J. Gonzanlez, D. Pelta (2011). Optimization in dynamic environments: A survey on problems, methods and measures. Soft Comput., 15: 1427–1448
- M. Dorigo, V. Maniezzo, A. Colorni (1996). Ant system: Optimization by a colony of cooperating agents, IEEE Trans SMC-Part B: Cybern 26(1): 29–41
- S. Droste (2002). Analysis of the (1+1) EA for a dynamically changing onemax-variant. CEC'02, pp. 55–60
- J. Eaton, S. Yang, M. Gongora (2017). Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling. IEEE Trans Intell Transport Syst, in press
- J. Eaton, S. Yang, M. Mavrovouniotis (2016). Ant colony optimization with immigrants schemes for the dynamic railway junction rescheduling problem with multiple delays. Soft Comput, 20(8): 2951–2966
- C. Eyckelhof, M. Snoek (2002). Ant systems for a dynamic TSP, Proc 3rd Int Workshop on Ant Algorithms. LNCS 2463, pp. 88–99
- M. Farina, K. Deb, P. Amato (2004). Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans Evol Comput, 8(5): 425–442

References – 2

- C. Goh, K.C. Tan (2009). A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans Evol Comput, 13(1): 103–127
- M. Guntsch, M. Middendorf (2001). Pheromone modification strategies for ant algorithms applied to dynamic TSP, EvoWorkshops 2001, LNCS 2037, pp. 213–222
- M. Guntsch, M. Middendorf (2002). Applying population based aco to dynamic optimization problems, Proc. 3rd Int. Workshop on Ant Algorithms, LNCS 2463, pp. 111–122
- M. Guntsch, M. Middendorf, H. Schmeck (2001). An ant colony optimization approach to dynamic TSP, GECCO 2001, pp. 860–867
- S. Jiang, S. Yang (2017a). Evolutionary dynamic multi-objective optimization: benchmarks and algorithm comparisons. IEEE Trans Cybern, 47(1): 198-211
- S. Jiang, S. Yang (2017b). A steady-state and generational evolutionary algorithm for dynamic multi-objective optimization. IEEE Trans Evol Comput, 21(1): 65-82.
- Y. Jin, J. Branke (2005). Evolutionary optimization in uncertain environments—A survey. IEEE Trans Evol Comput, 9(3): 303–317
- R.W. Morrison (2004). Designing Evolutionary Algorithms for Dynamic Environments. Springer
- E.H.J. Lewis, G. Ritchie (1998). A comparison of dominance mechanisms and simple mutation on non-stationary problems. PPSN V, pp. 139–148
- C. Li, S. Yang, M. Yang (2014). An adaptive multi-swarm optimizer for dynamic optimization problems. Evol Comput, 22(4): 559–594
- C. Li, T.T. Nguyen, M. Yang, M. Mavrovouniotis, S. Yang (2016). An adaptive multi-population framework for locating and tracking multiple optima. IEEE Trans Evol Comput, 20(4): 590–605

References - 3

- M. Mavrovouniotis, C. Li, S. Yang (2017). A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm & Evol Comput, 33: 1–17
- M. Mavrovouniotis, F.M. Muller, S. Yang (2017). Ant colony optimization with local search for dynamic travelling salesman problems. IEEE Trans Cybern, in press (DOI: 10.1109/TCYB.2016.2556742)
- M. Mavrovouniotis, S. Yang (2013a). Adapting the pheromone evaporation rate in dynamic routing problems, EvoApplications 2013, LNCS 7835, pp. 606–615
- M. Mavrovouniotis, S. Yang (2013b). Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors, Appl. Soft Comput, 13(10): 4023–40376.
- M. Mavrovouniotis, S. Yang (2015). Ant algorithms with immigrants schemes for the dynamic vehicle routing problem. Inform Sci, 294: 456–477
- M. Mavrovouniotis, S. Yang, X. Yao (2012). A benchmark generator for dynamic permutation-encoded problems, PPSN XII, LNCS 7492, pp. 508–517
- M. Mavrovouniotis, S. Yang, X. Yao (2014). Multi-colony ant algorithms for the dynamic travelling salesman problem, *IEEE SSCI 2014*, pp. 9–16
- 8 R. Montemanni, L. M. Gambardella, A. E. Rizzoli, A. V. Donati (2005). Ant colony system for a dynamic vehicle routing problem, Combinat Optim, 10: 327–343
- R.W. Morrison, K.A. De Jong (1999). A test problem generator for non-stationary environments. CEC'99, pp. 2047–2053
- K.P. Ng, K.C. Wong (1995). A new diploid scheme and dominance change mechanism for non-stationary function optimisation. ICGA 6, pp. 159–166
- 3 T.T. Nguyen, S. Yang, J. Branke (2012). Evolutionary dynamic optimization: A survey of the state of the art. Swarm & Evol Comput, 6: 1–24

References – 4

- F. Oppacher, M. Wineberg (1999). The Shifting balance genetic algorithm: Improving the GA in a dynamic environment. GECCO'99, vol. 1, pp. 504–510
- 60 G. Ruan, G. Yu, J. Zheng, J. Zou, S. Yang (2017). The effect of diversity maintenance on prediction in dynamic multi-objective optimization. Appl Soft Comput, 58: 631–647.
- H. Richter (2010). Evolutionary optimization and dynamic fitness landscapes: From reaction-diffusion systems to chaotic cml. Evolutionary Algorithms and Chaotic Systems, Springer, pp. 409–446.
- P. Rohlfshagen, P.K. Lehre, X. Yao (2009). Dynamic evolutionary optimisation: An analysis of frequency and magnitude of change. GECCO'09, pp. 1713–1720
- S.A. Stanhope, J.M. Daida (1999). (1+1) genetic algorithm fitness dynamics in a changing environments. CEC'99, vol. 3, pp. 1851–1858
- R. Tinos, S. Yang (2010) An analysis of the XOR dynamic problem generator based on the dynamical system. PPSN XI, LNCS 6238, Part I, pp. 274–283
- R. Tinos, S. Yang (2014). Analysis of fitness landscape modifications in evolutionary dynamic optimization. *Inform Sci*, 282: 214–236
- A. Simões, E. Costa (2009). Improving prediction in evolutionary algorithms for dynamic environments. GECCO'09, pp. 875–882
- K. Trojanowski, Z. Michalewicz (1999). Searching for optima in non-stationary environments. CEC'99, vol. 3, pp. 1843–1850
- A.S. Uyar, A.E. Harmanci (2005). A new population based adaptive domination change mechanism for diploid genetic algorithms in dynamic environments. Soft Comput, 9: 803–814
- S. Yang (2003). Non-stationary problem optimization using the primal-dual genetic algorithm. CEC'03, pp. 2246–2253

References - 5

- S. Yang, Y. Jiang, T.T. Nguyen (2013). Metaheuristics for dynamic combinatorial optimization problems. IMA J of Management Math, 24(4): 451–480
- S. Yang, C. Li (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput, 14(6): 959–974
- S. Yang, Y.-S. Ong, Y. Jin (2007). Evolutionary Computation in Dynamic and Uncertain Environments. Springer
- S. Yang, H. Richter (2009). Hyper-learning for population-based incremental learning in dynamic environments. CEC'09, pp. 682–689
- S. Yang, R. Tinos (2008). Hyper-selection in dynamic environments. CEC'08, pp. 3185–3192
- S. Yang, X. Yao (2005). Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput, 9: 815–834
- S. Yang, X. Yao (2008). Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput, 12: 542–561
- S. Yang, X. Yao (2013). Evolutionary Computation for Dynamic Optimization Problems. Springer
- K. Weicker (2003). Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Verlag
- S. Zeng et al. (2006). A dynamic multi-objective evolutionary algorithm based on an orthogonal design. CEC'06, pp. 573–580
- Z. Zhang, S. Qian (2011). Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems. *Soft Comput*, 15(7): 1333–1349