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Problem statement

Constrained numerical optimization problem (CNOP)
Find ~x which minimizes f (~x)

subject to:

gi(~x)  0, i = 1, . . . ,m
hj(~x) = 0, j = 1, . . . , p

~x 2 IRn is the vector of solutions ~x = [x1, x2, . . . , xn]T .
Each xk , k = 1, ..., n is bounded by lower and upper limits
Lk  xk  Uk which define the search space S.
F comprises the set of all solutions which satisfy the constraints
of the problems and it is called the feasible region.
To handle equality constraints they are transformed into inequality
constraints as follows:

��hj(~x)
��� "  0.
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Constrained numerical optimization problem

Constrained search space
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Feasible global optimum

In the following definitions we will assume minimization (without loss of
generality). ~x⇤ = [x⇤

1 , x
⇤
2 , . . . , x

⇤
n ]

T refers to the feasible optimum point
and its corresponding value of the objective function f (~x⇤) is called the
feasible optimum value. The pair ~x⇤ and f (~x⇤) is called feasible
optimum solution.
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Feasible global minimum

A function f (~x) defined on a set S attains its feasible global minimum
at a point ~x⇤ 2 F ✓ S if and only if: f (~x⇤)  f (~x), 8~x 2 F ✓ S.
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Kuhn-Tucker Conditions

Kuhn and Tucker developed the necessary and sufficient
optimality conditions for the CNOP assuming that the functions f ,
gi , and hj , are differentiable or twice-differentiable.
These optimality conditions, commonly known as the Kuhn-Tucker
conditions (KTC) consist of finding a solution to a system of
nonlinear equations.
However, it is quite difficult that KTC hold for real-world problems.
Therefore, the CNOP is an open-problem.
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Two categories

They usually require just one solution which is improved during
the process.
Two categories:

Direct Methods.
Indirect Methods.
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Direct methods

These methods use only the information of the objective function to
find search directions.
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Indirect methods

These methods require that the objective function is differentiable or
twice differentiable so as to use such information to guide the search.
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Motivation

Despite the large number of mathematical programming methods
developed, several optimization problems present characteristics that
make them difficult to solve using this kind of algorithms.
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Difficulties found

Problems with non-differentiable objective functions and/or
non-differentiable constraints.
Problems with disjoint feasible regions
Problems with objective function and/or constraints not available in
algebraic form.
Problems in which the Kuhn-Tucker conditions for optimality do not
hold.
Problems where no mathematical programming technique can
guarantee convergence to the global optimum.
Huge search spaces.
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Nature-inspired algorithms (NIAs)

Evolutionary algorithms (EAs) and swarm intelligence algorithms
(SIAs) (grouped as NIAs) are popular meta-heuristics approaches
used to solve complex optimization problems.
NIAs are designed to deal with unconstrained search spaces.
The design and addition of a constraint-handling techniques into a
NIA to deal with a constrained search space is an open problem.
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Main components of a nature-inspired algorithm

1 Solution encoding.
2 Fitness function.
3 Initial population.
4 Parent selection.
5 Variation operators (crossover & mutation).
6 Replacement.
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Why the search must change?

Unconstrained optimization problem
Min: f (~x) = (x2

1 + x2 � 11)2 + (x1 + x2
2 )

2

Taken from Deb, K., Opt. for Eng. Design, Algorithms and Examples, Prentice-Hall, 1995.
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Why the search must change?

Constrained optimization problem
Min: f (~x) = (x2

1 + x2 � 11)2 + (x1 + x2
2 )

2

subject to:
(x1 � 5)2 + x2

2 � 26 � 0

Taken from Deb, K., Opt. for Eng. Design, Algorithms and Examples, Prentice-Hall, 1995.
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Why a constraint-handling technique?

The initial population (usually generated at random) may contain
several (if not all) infeasible solutions, and it may be difficult to
generate only feasible solutions from the beginning.
The information about feasibility must be incorporated into the
fitness function to bias the search to the feasible region.
The parent selection and/or replacement must distinguish
between feasible and infeasible solutions.
The variation operators are blind with respect to the constraints of
the optimization problem.
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Constraint-handling over the years

Two classifications were proposed: one by Michalewicz and
Schoenauer [96] and another one by Coello [18].
Both taxonomies agreed on penalty functions as a particular class.
This new classification for earlier methods is based on
constraint-handling mechanisms, whereas the search algorithm
employed is discussed as a separate issue.
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Penalty functions

Definition
Based on mathematical programming approaches, where a CNOP is
transformed into an unconstrained numerical optimization problem,
NIAs have adopted penalty functions, whose general formula is the
following:

�(~x) = f (~x) + p(~x)

where �(~x) is the expanded objective function to be optimized, and
p(~x) is the penalty value that can be calculated as follows:

p(~x) =
mX

i=1

ri · max(0, gi(~x))2 +
pX

j=1

cj · |hj(~x)|

where ri and cj are positive constants called “penalty factors”.
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Penalty functions

Pros and cons
The aim is to decrease the fitness of infeasible solutions.
Unlike mathematical programming approaches, where interior and
exterior penalty functions are employed, NIAs have mainly
focused on the last ones.
Their implementation is quite simple ... but,
Penalty functions require a careful fine-tuning of their penalty
factors.
Such values usually are highly problem-dependent.
Different approaches have been proposed to tackle this
shortcoming.
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Penalty functions

Death penalty
The most simple penalty function.
Infeasible solutions are assigned the worst possible fitness value
or are simply eliminated from the optimization process.
Keeps the search from using valuable information from infeasible
solutions.
Not suitable for very small feasible region with respect to the
whole search space.
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Penalty functions

Static penalty functions
Those whose penalty factor values (ri and cj , i = 1, . . . ,m and
j = 1 . . . ,m) remain fixed during all the process.

Kuri and Villegas-Quezada [59].
Homaifar et al. [43]. Hoffmeister and Sprave [42].
Le Riche et al. [112]).

The main drawback is the generalization of such type of approach,
i.e., the values that may be suitable for one problem are normally
unsuitable for another one.
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Penalty functions

Dynamic penalty functions
Time (usually the generation counter in a NIA) is used to affect the
penalty factors.
Considering the usage of exterior penalty functions, soft penalties
are expected first, while severe penalties are adopted in the last
part of the search.
Examples:

Joines and Houck [48].
Kazarlis and Petridis[51].
Crossley and Williams [21].

The cooling factor of the simulated annealing algorithm has been
employed to vary the penalty factors by Michalewicz and Attia [94].
The main disadvantages of dynamic penalty functions are the
parameters for their dynamic tuning and the difficulty to generalize
them.
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Penalty functions

Adaptive penalty functions
The behavior of the NIA is used to update the penalty factors.
Feasibility of the best solution in a number of generations by
Hadj-Alouane and Bean [34].
The fitness of the best feasible solution by Rasheed [105].
The balance between feasible and infeasible solutions by Hamda
and Schoenauer [35] and Hamida and Schoenauer [36].
The average of the objective function and the level of violation of
each constraint by Barbosa and Lemonge [11].
Co-evolution by Coello [20].
Fuzzy logic by Wu and Yu [150].
Their main drawback lies in the following: there is no guarantee
that the values defined based on the current behavior will be
indeed useful later.
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Penalty functions

Discussion
Diverse ways to define penalty factors (static, dynamic, adaptive,
co-evolved, fuzzy-adapted, etc.).
Not clear which approach was more competitive.
Most of the time, additional parameters were required.
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Decoders

One of the most competitive constraint-handling techniques in the
early years.
They are based on the idea of mapping the feasible region F of
the search space S onto an easier-to-sample space where a NIA
can provide a better performance [56].
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Decoders

The mapping process must guarantee that each feasible solution
in the search space is included in the decoded space and that a
decoded solution corresponds to a feasible solution in the search
space.
The transformation process must be fast and it is highly desirable
that small changes in the search space of the original problem
cause small changes in the decoded space as well.

Homomorphous maps: the feasible region is mapped into an
n-dimensional cube, by Koziel and Michalewicz [56, 57].
Riemann mappings by Kim and Husbands [52, 53, 54].
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Decoders

Discussion
Their actual implementation is far from trivial.
They may involve a computational cost.
Decoders are rarely used nowadays.
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Special operators

A special operator is conceived as a way of either preserving the
feasibility of a solution or moving within a specific region of
interest within the search space.
A variation operator which constructs linear combinations of
feasible solutions to preserve their feasibility (GENOCOP) by
Michalewicz [93].
Special operators designed to convert solutions which only satisfy
linear constraints into fully feasible solutions (GENOCOP III) by
Michalewicz and Nazhiyath [95].
Special operators to assign values to the decision variables
aiming to keep the feasibility of the solution by Kowalczyk [55].
Special operators for two specific problems to sample the
boundaries of their feasible regions by Schoenauer and
Michalewicz [116, 117].
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Special operators

Discussion
Highly competitive results can be found when adopting special
operators.
Their main drawback is their limited applicability.
Most of them require an ad-hoc initialization process or at least
one feasible or partially-feasible solution in the initial population.
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Separation of objective function and constraints

Unlike combining the objective function and the values of the
constraints into a single value (i.e. penalty function), there are
constraint-handling techniques which work with the opposite idea.
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Separation of objective function and constraints

Powell and Skolnick in [103] proposed an approach based on the
following Equation.

fitness(~x) =

(
f (~x) if feasible
1 + r

⇣Pm
i=1 gi(~x) +

Pp
j=1 hj(~x)

⌘
otherwise

where a feasible solution has always a better fitness value with
respect to that of an infeasible solution, whose fitness is based
only on their accumulated constraint violation.
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Separation of objective function and constraints

Hinterding and Michalewicz in [41] proposed the idea of dividing
the search in two phases: (1) finding feasible solutions, regardless
of the objective function value, and (2) after a suitable number of
feasible solutions has been found, optimizing the objective
function.
Such idea was revisited by Venkatraman and Yen [138].
Schoenauer and Xanthakis in [118] proposed a lexicographic
ordering (behavioral memory) to satisfy constraints, i.e., when a
certain number of solutions in the population satisfy the first
constraint, an attempt to satisfy the second one is made (but the
first constraint must continue to be satisfied), and so on.
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Separation of objective function and constraints

Deb [25] proposed a set of three feasibility criteria as follows:
1 When comparing two feasible solutions, the one with the best

objective function is chosen.
2 When comparing a feasible and an infeasible solution, the feasible

one is chosen.
3 When comparing two infeasible solutions, the one with the lowest

sum of constraint violation is chosen.

The sum of constraint violation can be calculated as follows:

�(~x) =
mX

i=1

max(0, gi(~x))2 +
pX

j=1

|hj(~x)|
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Separation of objective function and constraints

Different multi-population schemes have been proposed.
Coello [19] divided a GA-population into sub-populations and each
sub-population tried to satisfy one constraint of a CNOP and
another one optimized the objective function.
Liang and Suganthan proposed a dynamic assignment of
sub-swarms to constraints in PSO [67].
The approach was further improved in [68], where only two
sub-swarms, one of them with a tolerance for inequality
constraints, were used. Each particle, and not a sub-swarm, was
dynamically assigned the objective function or the constraint, in
such a way that more difficult objectives to optimize (satisfy) were
assigned more frequently.
Li et al. [66] adopted a similar approach but using DE as a search
algorithm.
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Separation of objective function and constraints

Liu et al. [69] proposed a separation scheme based on a
co-evolutionary approach in which two populations are adopted.
The first one optimized the objective function without considering
the constraints, while the second population aimed to satisfy the
constraints of the problem. Each population could migrate
solutions to the other.
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Separation of objective function and constraints

Multi-objective optimization concepts (Pareto dominance and
Pareto ranking) have been quite popular to solve constrained
optimization problems [84]. Two groups can be identified:

1 CNOP as a bi-objective problem (the original objective function and
the sum of constraint violation).

2 CNOP as a multi-objective optimization problem (the original
objective function and each constraint are handled as objectives).
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Separation of objective function and constraints

The main shortcomings are related to the lack of bias provided by
Pareto ranking when used in a straightforward manner [115], and
the difficulties of these approaches to preserve diversity in the
population [84].
Additional mechanisms have been adopted such as Pareto
ranking in different search spaces [106, 107, 1, 4], the shrinking of
the search space [40] and the use of non-dominated sorting and
clustering techniques to generate collaboration among
sub-populations [108].
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Separation of objective function and constraints

Discussion
This type of constraint-handling technique has been found to
generate an important diversity loss.
It is important to design appropriate diversity maintenance
mechanisms.
However, they are quite popular (usually no additional parameters
required and easy to generalize).
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General comments

The first attempts to generate constraint-handling techniques were
similar to an exploration phase, in which a variety of approaches
were proposed.
Main shortcomings:

Unsuitable bias.
Need of a careful fine-tuning of parameters.
Difficult to generalize.
High computational cost and difficult implementations.

The exploitation phase was about to begin.
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Feasibility rules

The feasibility rules proposed by Deb [25, 100] constitute an
example of a constraint-handling technique that was proposed
several years ago, but whose impact is still present in the
literature.
Its popularity lies on its ability to be coupled to a variety of
algorithms, without introducing new parameters.
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Feasibility rules

Studies on other topics
Parameter control mechanisms in DE-based constrained
numerical optimization by Palomeque and Mezura-Montes (DE
self-adaptive parameters, including diversity parameters) [89] and
by Zielinski et al. (DE adaptive parameters) [162].
Zielinski and Laur [160] explored different termination conditions
(e.g., improvement-based criteria, movement-based criteria,
distribution-based criteria) for DE in constrained optimization.
Zielinski and Laur [161] studied the effect of the tolerance utilized
in the equality constraints, where values between ✏ = 1 ⇥ 10�7

and ✏ = 1 ⇥ 10�15 allowed the algorithm, coupled with the
feasibility rules, to reach competitive results.
Mezura-Montes and Coello Coello [83] explored diversity
mechanisms to improve the performance of evolution strategies
when solving CNOPs.
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Feasibility rules

Multi-operator mechanisms
The use of feasibility rules has favored the development of
approaches with self-adaptive variation operator selection
mechanisms on DE:
jDE-2 by Brest [14], where different variants are combined with an
injection of solutions generated at random
SaDE by Huang et al. [46], where, besides the combination of DE
variants, SQP is adopted as a local search operator.
Four DE variants with four sub-populations with fixed-dynamic size
and migration by Elsayed et al. [80].
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Feasibility rules

Multi-operator mechanisms
... and studies on PSO:
A combination of global-local best PSO with dynamic mutation
operator by Cagnina et al.[17]. Due to stagnation in some test
problems, a further version of this approach was proposed by the
same authors in [16], where a bi-population scheme and a “shake”
operator were added [16].
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Feasibility rules

Multi-operator mechanisms
and also on GAs.
Elsayed et al. implemented their four sub-population scheme with
GAs in [80].
Elsayed et al. [28] proposed a modified GA where a novel
crossover operator called multi-parent crossover and also a
randomized operator were added to a real-coded GA.
Elsayed et al. [27] compared ten different GA variants. The
crossover operators employed were triangular crossover,
Simulated binary crossover, parent-centric crossover, simplex
crossover, and blend crossover. The mutation operators adopted
were non-uniform mutation and polynomial crossover.
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Feasibility rules

Combination with special operators
Barkat Ullah [135] designed a mechanism to force infeasible
individuals to move to the feasible region through the application
of search space reduction and diversity checking mechanisms
designed to avoid premature convergence.
Mezura-Montes and Cetina-Domı́ngez [82] proposed a special
operator designed to locate infeasible solutions close to the best
feasible solution.
A more recent version was proposed by the authors in [92], where
two operators were improved and a direct-search local operator
was added to the algorithm.
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Feasibility rules

Adapted to DE
Zielinski and Laur [159] coupled DE with the feasibility rules in a
greedy selection scheme between target and trial vectors.
Lampinen used a similar DE-based approach in [60]. However,
the third criterion (originally based on the sum of constraint
violation) was based on Pareto dominance in constraints space.
Kukkonen and Lampinen proposed their Generalized Differential
Evolution (GDE) [58] based on the aforementioned idea.
Mezura-Montes et al. [85, 90, 91] proposed a new DE variant
coupled with the ability to generate more than one offspring per
parent.
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Feasibility rules

Adapted to artificial immune systems
Cruz et al. [22] and Aragón et al. [6], based on the clonal selection
principle used the feasibility rules to rank antibodies based on
affinity.
Aragón et al. [7], based on a T-cell model in which three types of
cells (solutions) are adopted, used the feasibility rules as the
criteria in the replacement process.
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Feasibility rules

Adapted to artificial bee colony
Karaboga and Basturk [50] and Karaboga and Akay [49] changed
a greedy selection based only on the objective function values by
the use of the feasibility rules with the aim of adapting an artificial
bee colony algorithm (ABC) to solve CNOPs.
Mezura-Montes and Cetina-Domı́nguez [82] and Mezura-Montes
and Velez-Koeppel [92] combined ABC with a smart-flight and a
local-search operator, respectively, to improve its performance in
constrained search spaces.
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Feasibility rules

Adapted to other NIAs
Ma and Simon [76] proposed an improved version of the
biogeography-based optimization (BBO) algorithm (inspired on the
study of distributions of species over time and space) with the
feasibility rules as criteria to choose solutions with the so-called
“habitat suitability index”.
Liu et al. [72] proposed the organizational evolutionary algorithm
(OEA). A static penalty function and the feasibility rules were
compared as constraint-handling techniques.
Mezura-Montes and Hernández-Ocaña [88] used the feasibility
rules with the Bacterial Foraging Optimization Algorithm (BFOA) in
the greedy selection mechanism within the chemotactic loop.
Landa and Coello [61] adopted the rules in an approach where a
cultural DE-based mechanism was developed.
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Feasibility rules

Used in hybrid approaches
Muñoz-Zavala et al. [98] used a DE mutation operator to update
the local-best particle in PSO.
Wang et al. [142] implicitly used feasibility rules to rank the
particles in a hybrid multi-swarm PSO (HMPSO) where the DE
mutation operator was also adopted.
HMPSO was improved by Lui et al. in [70], where two additional
mutation operators were used. The number of evaluations
required by the improved approach, decreased in almost 50%.
He and Wang [38] used simulated annealing (SA) as a local
search operator and applied it to the gbest particle at each
generation in PSO.

Efrén Mezura-Montes Constraint-Handling in Nat-Insp. Opt. CEC 2017, SPAIN 62 / 156



Feasibility rules

Used in hybrid approaches
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Feasibility rules

Used in memetic algorithms
Menchaca-Mendez and Coello Coello [81] proposed a DE-based
algorithm with a variation of the Nelder-Mead algorithm as a local
search operator.
Sun and Garibaldi [122] proposed an estimation of distribution
algorithm (EDA) with SQP as a local search operator.
Ullah et al. [136, 137] presented an agent-based memetic
algorithm where a learning process (a mutation operator chosen
by the solution) is used to improve solutions.
Ali and Kajee-Bagdadi [2] presented a DE-based approach with a
modified version of the pattern search method as a local search
operator.
Hamza et al. [37] proposed a DE-based algorithm with a
constraint-consensus operator applied to infeasible vectors so as
to become them feasible.
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Feasibility rules

Empirical studies
Mezura-Montes and Flores-Mendoza compared PSO variants
[87].
Mezura-Montes et al. compared DE variants [86].
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Stochastic ranking (SR)

Proposed by Runarsson and Yao [114] to deal with the
shortcomings of a penalty function (over and under penalization).
A user-defined parameter called Pf controls the criterion used for
comparison of infeasible solutions:

Based on their sum of constraint violation
Based only on their objective function value.

SR uses a bubble-sort-like process to rank the solutions in the
population.
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Stochastic ranking (SR)

Begin
For i=1 to N

For j=1 to P-1
u=random(0,1)
If
�
�(Ij) = �(Ij+1) = 0

�
or (u < Pf )

If
�
f (Ij) > f (Ij+1)

�

swap(Ij ,Ij+1)
Else

If
�
�(Ij) > �(Ij+1)

�

swap(Ij ,Ij+1)
End For
If (not swap performed)

break
End For

End
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Stochastic ranking (SR)

Adapted to DE
Despite being a ranking process, SR has been adopted by NIAs
which do not rank solutions, such as DE.
Zhang et al. [156] used SR in a DE variant based on [90]. Pf was
defined by a dynamic parameter control mechanism (high value at
the beginning, low value at the end).
Liu et al. [73, 71] also used SR in DE and proposed the concept of
directional information related to the choice of the most convenient
search direction based on the DE mutation operator.
Fan et al. [30] ranked vectors with SR before the DE operators are
applied. The population is split into two sets: (1) the vectors with
the highest ranks, and (2) the remaining vectors. The base vector
and the vector which determines the search direction are chosen
at random from the first set. The other vector is chosen at random
from the second set.
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Stochastic ranking (SR)

Adapted to other NIAs
Leguizamón and Coello Coello [63] added SR to an ACO version
for dealing with CNOPs. A comparison against traditional penalty
functions showed that SR provided better and more robust results.
Fonseca et al. [32] used ACO with SR to solve discrete structural
optimization problems.
Mallipeddi et al. [77] proposed a two-population evolutionary
programming (EP) approach with an external memory to store
solutions based on an Euclidean distance measure that aimed to
promote diversity. SR was compared against the feasibility rules.
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Stochastic ranking (SR)

Applications and other studies
Huan-Tong et al. [44] used SR with its original search algorithm,
an evolution strategy, (ES) for solving reactive power optimization
problems.
Runarsson and Yao [115] improved their ES by adding a
differential mutation similar to that used in DE. The authors
concluded that a good constraint-handling mechanism needs to
be coupled to an appropriate search engine.
SR has been further developed by Runarsson and Yao [113] in
one of the earliest approaches focused on using fitness
approximation for constrained numerical optimization
(k -nearest-neighbors was adopted for such purpose).
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"-constrained method

Proposed by Takahama and Sakai [130]. It transforms a CNOP
into an unconstrained numerical optimization problem.
Two main components:

A relaxation of the limit to consider a solution as feasible.
A lexicographical ordering mechanism in which the minimization of
the sum of constraint violation precedes the objective function.

The value " > 0, determines the so-called "-level comparisons
between a pair of solutions ~x1 and ~x2 with objective function values
f (~x1) and f (~x2) and sums of constraint violation �(~x1) and �(~x2).
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"-constrained method

(f (~x1),�(~x1)) <" (f (~x2),�(~x2)) ,

8
<

:

f (~x1) < f (~x2) , if �(~x1), �(~x2)  "
f (~x1) < f (~x2) , if �(~x1) = �(~x2)
�(~x1) < �(~x2) , otherwise

(f (~x1),�(~x1)) " (f (~x2),�(~x2)) ,

8
<

:

f (~x1)  f (~x2) , if �(~x1), �(~x2)  "
f (~x1)  f (~x2) , if �(~x1) = �(~x2)
�(~x1) < �(~x2) , otherwise
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"-constrained method

If both solutions in the pairwise comparison are feasible, slightly
infeasible (as determined by the " value) or even if they have the
same sum of constraint violation, they are compared using their
objective function values.
If both solutions are infeasible, they are compared based on their
sum of constraint violation.
If " = 1, the "-level comparison works by using only the objective
function values as the comparison criteria.
If " = 0, then the "-level comparisons <0 and 0 are equivalent to
a lexicographical ordering (i.e., �(~x) precedes f (~x)).
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"-constrained method

Adapted to other NIAs
Takahama and Sakai used a similar approach called
↵-constrained method into a GA [123]. Even mathematical
programming methods have been used with this approach
(Nealder-Mead) [124].
Wang and Li also adopted the ↵-constrained method in [140],
using DE as their search engine
Takahama and Sakai adopted the "-constrained method in PSO
[125], and mainly in DE [126].
Takahama et al. used their constraint-handling technique in a
hybrid PSO-GA [130].
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"-constrained method

Improvements
The " value is fine-tuned by Takahama and Sakai with dynamic
[124], and adaptive parameter control mechanisms [127].
Zeng et al. [155] also proposed a dynamic decreasing mechanism
inspired in [36].
A gradient-based mutation was added to the DE-based approach
by the same authors in [126] and by Zhang et al. in an EA in [157].
In [128], Takahama and Sakai improved their approach by adding
a decreasing probability on the use of the gradient-based
mutation. They also introduced two new mechanisms to deal with
boundary constraints (reflecting back and assigning the limit
value).
The authors in [129] added an archive to store solutions and the
ability of a vector to generate more than one trial vector.
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"-constrained method

NIAs turning to the "-constrained method
"-jDE by Brest et al. [12], where different DE variants, parameter
self-adaptation (including "), and population reduction were
employed.
An improved version called jDEsoco was proposed by Brest et al.
in [13], where an ageing mechanism to replace those solutions
stagnated in a local optimum was added. Moreover, only the 60%
of the population was compared by the "-constrained method and
the remaining 40% was compared by only using the objective
function value.
Mezura-Montes et al. used the "-constrained method in ABC [86].
A dynamic mechanism for the equality constraints tolerance was
considered. The results obtained outperformed those reported by
a previous ABC version with the feasibility rules [82].
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Novel penalty functions

The most popular approach recently found regarding
penalization-based approaches is the adaptive penalty function.
Dynamic penalty functions, which adopt the current generation
number to control the decrement of the penalty factor, are still
popular.
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Novel penalty functions

Adaptive penalty functions
Farmani and Wright [31] proposed a two-part adaptive penalty
function. The first part increases the fitness of the infeasible
solutions with a better value of the objective function with respect
to the best solution in the current population. The second part
modifies the fitness values of the worst infeasible solutions.
Tessema and Yen [133] used the number of feasible solutions in
the current population to determine penalization values so as to
favor slightly infeasible solutions having a good objective function
value.
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Novel penalty functions

Adaptive penalty functions
Mani and Patvardhan [79] proposed a two-population
GA-like-based approach. One population evolves by using an
adaptive penalty function. The other population evolves based on
feasibility rules. Both populations exchange solutions.
He et al. [39] used two PSO algorithms, one to co-evolve penalty
factors and the other one to evolve solutions to the optimization
problem.
Wu [151] proposed an artificial immune system (AIS) where an
adaptive penalty function was defined to assign its affinity to each
antibody.
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Novel penalty functions

Dynamic penalty functions
Tasgetiren and Suganthan [132] used of a dynamic penalty
function coupled with a multi-population DE algorithm where each
populations evolved independently.
Puzzi and Carpinteri [104] explored a dynamic penalty function
based on multiplications instead of summations in a GA-based
approach.
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Novel penalty functions

Static penalty functions
Deb and Datta [26] obtained suitable penalty factors as follows:
A bi-objective problem (original objective function and sum of
constraint violation �, restricted by a tolerance value) was solved
by a MOEA
A cubic curve to approximate the current obtained Pareto front
was generated by using four points whose � values were below a
small tolerance.
The penalty factor was then defined by calculating the
corresponding slope at � = 0.
After that, a traditional static penalty function was used to solve
the original CNOP by using a local search algorithm (Matlab’s
fmincon() procedure was used by the authors) using the solution
with the lowest � value from the population of the MOEA as the
starting point for the search.
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Novel penalty functions

Static penalty functions
In [23], Datta and Deb extended their approach to deal with
equality constraints.
Two main changes:

The punishment provided by the penalty value obtained by the
bi-objective problem was increased if the local search failed to
generate a feasible solution.
The small tolerance used for choosing the four points employed to
approximate the cubic curve was relaxed.
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Novel special operators

The recent proposals based on the use of special operators that
have been revised here emphasize the current focus on
generating proposals which are easier to generalize.
Leguizamón and Coello Coello [62] proposed a boundary operator
based on conducting a binary search between a feasible and an
infeasible solution. Furthermore, the authors designed a strategy
to select which constraint (if more than one is present in a CNOP)
is analyzed.
The search algorithm was an ACO variant for continuous search
spaces.
The approach needed an additional constraint-handling technique
(a penalty function was used in this case)
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Novel special operators

Huang et al. [45] proposed a boundary operator in a
two-population approach.
The first population evolves by using DE as the search engine,
based only on the objective function value (regardless of
feasibility).
The second population stores only feasible solutions and the
boundary operator uses solutions from both populations to
generate new solutions, through the application of the bisection
method in the boundaries of the feasible region.
The Nelder-Mead simplex method was used as a local search
operator
It does not require an additional constraint-handling technique, but
a feasible solutions is needed at the beginning of the process.
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Novel special operators

Constraint satisfaction
Wanner et al. [149] proposed the Constraint Quadratic
Approximation (CQA), which is a special operator designed to
restrict an evolutionary algorithm (a GA in this case) to sample
solutions inside an object with the same dimensions of the
feasible region of the search space.
This is achieved by a second-order approximation of the objective
function and one equality constraint.
A static penalty function was used to guide the GA search and the
equality constraint was transformed into two inequality constraints
by using a small ✏ tolerance.
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Novel special operators

Constraint satisfaction
Peconick et al. [102] proposed the Constraint Quadratic
Approximation for Multiple Equality Constraints (CQA-MEC).
An iterative projection algorithm was able to find points satisfying
the approximated quadratic constraints with a low computational
overhead.
It still requires the static penalty function to work.
Araujo et al. [8] extended the previous approaches to deal with
multiple inequality constraints by using a special operator in which
the locally convex inequality constraints are approximated by
quadratic functions, while the locally non-convex inequality
constraints are approximated by linear functions.
The dependence of the static penalty function remains in this last
approach.
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Novel special operators

Constraint satisfaction
Ullah et al.[134] proposed an agent-based memetic algorithm in
which the authors adopt a special local operator for equality
constraints.
It is applied to some individuals in the population as follows: the
satisfaction of a randomly chosen equality constraint is verified for
a given solution. If it is not satisfied, a decision variable, also
chosen at random, is updated with the aim to satisfy it. If the
constraint is indeed satisfied, two other variables are modified in
such a way that the constraint is still satisfied (i.e., the constraint is
sampled).
This special operator is only applied during the early stages of the
search because it reduces the diversity in the population.
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Novel special operators

Feasible directions
Spadoni and Stefanini [121] transformed a CNOP into an
unconstrained search problem by sampling feasible directions
instead of solutions of a CNOP.
Three special operators, related to feasible directions for box
constraints, linear inequality constraints, and quadratic inequality
constraints, are utilized to generate new solutions by using DE as
the search algorithm.
The main contribution of the approach is that it transforms a
CNOP into an unconstrained search problem without using a
penalty function. However, it cannot deal with nonlinear (either
equality or inequality) constraints.
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Novel special operators

General operators made special
Lu and Chen [75] proposed an approach called self-adaptive
velocity particle swarm optimization (SAVPSO).
Three elements:

The position of the feasible region with respect to the whole search
space.
The connectivity and the shape of the feasible region.
The ratio of the feasible region with respect to the search space.

The velocity formula was modified in such a way that each particle
has the ability to self-adjust its velocity according to the
aforementioned features of the feasible region.
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Novel special operators

Constraint satisfaction
Wu et al. [152] and Li & Li [65] modified variation operators in NIAs
in such a way that the recombination of feasible and infeasible
solutions led to the generation of more feasible solutions.
An adaptive mechanism to maintain infeasible solutions was
added to the approach.
This latter version was specifically based on DE’s variation
operators [65].
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Multi-objective concepts

Despite the fact that empirical evidence has suggested that
multi-objective concepts are not well-suited to solve CNOPs, there
are highly competitive constraint-handling techniques based on
such concepts.
The use of transformation of a CNOP into a bi-objective
optimization problem (objective function and sum of constraint
violation) has been preferred over considering each constraint as
a separate objective.

Efrén Mezura-Montes Constraint-Handling in Nat-Insp. Opt. CEC 2017, SPAIN 95 / 156



Multi-objective concepts

Despite the fact that empirical evidence has suggested that
multi-objective concepts are not well-suited to solve CNOPs, there
are highly competitive constraint-handling techniques based on
such concepts.
The use of transformation of a CNOP into a bi-objective
optimization problem (objective function and sum of constraint
violation) has been preferred over considering each constraint as
a separate objective.

Efrén Mezura-Montes Constraint-Handling in Nat-Insp. Opt. CEC 2017, SPAIN 95 / 156



Multi-objective concepts

Bi-objective problem
Ray et al. [109] proposed the Infeasibility Driven Evolutionary
Algorithm (IDEA).
The second objective is the constraint violation measure, (zero
value for feasible solutions and a sum of ranking values based on
the violation per constraint).
The union of parents and offspring is split in two sets, one with the
feasible solutions and the other with the infeasible ones.
Non-dominated sorting ranks both sets separately and, based on
the proportion of desired feasible solutions, they are chosen first
from the infeasible set and later on, the best ranked feasible
solutions are chosen.
SQP was added to IDEA in the Infeasibility Empowered Memetic
Algorithm (IMEA) [120].
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Multi-objective concepts

Bi-objective problem
Wang et al. [147], in their adaptive trade-off model (ATM) divided
the search in three phases based on the feasibility of solutions in
the population:

Only infeasible solutions (Pareto dominance)
Feasible and infeasible solutions (fitness value based on feasible
solutions ratio).
Only feasible solutions (objective function).

Wang et al. [146] used the ATM with a NIA in which the variation
operators were simplex crossover and one of two mutations.
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Multi-objective concepts

Bi-objective problem
Wang et al. [145] added a shrinking mechanism to ATM in the
Accelerated ATM (AATM).
The ATM was coupled with DE in a recent approach [143],
showing an improvement in the results.
Liu et al. [72] used the ATM in an EA but with two main
differences:

Good point set crossover was used to generate offspring.
Feasibility rules were the criteria to select solutions in the second
stage of the ATM.
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Multi-objective concepts

Bi-objective problem
Li et al. [64] used a PSO algorithm in which Pareto dominance
was used as a criterion in the pbest update process and in the
selection of the local-best leaders in a neighborhood. The sum of
constraint violation worked as a tie-breaker.
Venter and Haftka [139] also adopted PSO as their search
algorithm. However, the leader selection was based most of the
time on the sum of constraint violation, while the rest of the time
the criterion was one of the three following choices:

The original objective function.
The crowding distance.
Pareto dominance.
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Multi-objective concepts

Bi-objective problem
Wang et al. [141] used a hybrid selection mechanism based on
Pareto dominance and tournament selection into a Adaptive
Bacterial Foraging Algorithm (ABFA).
Wang et al. [144] proposed the use of Pareto dominance in a
Hybrid Constrained EA (HCOEA). A global search carried out by
an EA is coupled to a local search operator based on SPX.
Wang et al. [148] proposed a steady state EA by applying
orthogonal crossover to a randomly chosen set of solutions in the
current population. After that, the non-dominated solutions
obtained from the set of offspring are chosen. Alternative,
solutions can also be chosen if they have a lower sum of
constraint violation.
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Multi-objective concepts

Three-objective problem
Reynoso-Meza et al. [111] proposed the spherical-pruning
multi-objective optimization differential evolution (sp-MODE).
The second objective was the sum of constraint violation for
inequality constraints and the third objective was the sum of
constraint violation for equality constraints.
An external archive was used to store non-dominated solutions.
The sphere-pruning operator aims to find the best trade-off
between feasibility and the optimization of the objective function.
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Multi-objective concepts

Three-objective problem
Zeng et al. [154] proposed converting a constrained problem into
a dynamic constrained three-objective optimization problem.

The original objective.
The constraint-violation (decreasing).
A niche count (decreasing).

Three evolutionary multi-objective optimization algorithms were
tested in the approach.
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Multi-objective concepts

Many-objective problem
Gong and Cai [33] used Pareto dominance in the space defined
by the constraints of a problem as a constraint-handling
mechanism in a DE-based approach.
An orthogonal process was employed for both, generating the
initial population and for applying crossover.
An external archive stored non-dominated solutions.
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Ensemble of constraint-handling techniques

Mallipeddi and Suganthan [78] proposed an ensemble of four
constraint techniques (ECHT):

Feasibility rules.
Stochastic ranking.
A self-adaptive penalty function.
The "-constrained method.

A four sub-population scheme was considered.
One EP-based and one DE-based versions were designed.
Each constraint-handling technique was used to evolve an specific
sub-population.
All sub-populations share all of their offspring,
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Ensemble of constraint-handling techniques

Elsayed et al. [29] proposed a DE-based algorithm where the
combination of four DE-mutations, two DE recombinations and
two constraint-handling techniques (feasibility rules and
"-constrained method) generated sixteen variants which were
assigned to each individual in a single-population algorithm.
The rate of usage for each variant was based on its improvement
measured by its ability to generate better solutions.
A local search algorithm was applied.
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Ensemble of constraint-handling techniques

A similar idea was presented in a combination of two DE variants
and a variable neighborhood search with three constraint-handling
techniques (feasibility rules, "-constrained method, and an
adaptive penalty function) by Tasgetiren et al. [131].
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Ensemble of constraint-handling techniques

The ECHT opens a new paradigm in constraint-handling
techniques.
The design of mechanisms which allow the combination of
approaches that can be seen as complementary (in terms of the
way in which they operate).
However, as the combination of several techniques considerably
enhances the capabilities of an approach, it is also required to
define parameter values for each of these techniques.
Parameter control [74] becomes an important issue when
designing ensemble approaches.
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A bird’s eye view

Core Pros Cons
Technique concept

FR Three criteria for Simple to add May cause
pairwise selection into a NIA premature convergence

No extra parameters
SR Ranking process Easy to implement Not all NIAs have

ordering in their processes
One extra parameter

"-CM Transforms a constrained Very competitive Extra parameters
problem into an performance Local search for

unconstrained problem high performance
NPF Focus on adaptive and dynamic Well-known Some of them

approaches transformation process add extra parameters
NSO Focus on boundary Tendency to design Still

operators and easy to generalize limited usage
equality constraints operators

MOC Focused on bi-objective Both, Pareto May require
transformation ranking and dominance an additional

of a CNOP still popular constraint-handling
Pareto dominance technique

ECHT Combination of two Very Requires the
or more constraint-handling competitive definition of

techniques performance several parameter values
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How important is the search algorithm?

DE is the most preferred algorithm, usually coupled with the
feasibility rules.
GAs are popular when coupled with penalty functions.
PSO has been mainly coupled with the feasibility rules as well.
ES has been usually coupled with the stochastic ranking.
EP, ACO scarcely used.
Among novel algorithms, ABC with feasibility rules has been
particularly popular.
AIS recently coupled with the feasibility rules.
Gradient-based local search frequently found.
Special operators focused on equality constraints.
Multi-operator algorithms preferred over hybrid approaches.
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Benchmarks

The first one
Function n Type of function ⇢ LI NI LE NE a

g01 13 quadratic 0.0003% 9 0 0 0 6
g02 20 nonlinear 99.9973% 2 0 0 0 1
g03 10 nonlinear 0.0026% 0 0 0 1 1
g04 5 quadratic 27.0079% 4 2 0 0 2
g05 4 nonlinear 0.0000% 2 0 0 3 3
g06 2 nonlinear 0.0057% 0 2 0 0 2
g07 10 quadratic 0.0000% 3 5 0 0 6
g08 2 nonlinear 0.8581% 0 2 0 0 0
g09 7 nonlinear 0.5199% 0 4 0 0 2
g10 8 linear 0.0020% 6 0 0 0 6
g11 2 quadratic 0.0973% 0 0 0 1 1
g12 3 quadratic 4.7697% 0 1 0 0 0
g13 5 nonlinear 0.0000% 0 0 1 2 3
g14 10 nonlinear 0.0000% 0 0 3 0 3
g15 3 quadratic 0.0000% 0 0 1 1 2
g16 5 nonlinear 0.0204% 4 34 0 0 4
g17 6 nonlinear 0.0000% 0 0 0 4 4
g18 9 quadratic 0.0000% 0 13 0 0 6
g19 15 nonlinear 33.4761% 0 5 0 0 0
g20 24 linear 0.0000% 0 6 2 12 16
g21 7 linear 0.0000% 0 1 0 5 6
g22 22 linear 0.0000% 0 1 8 11 19
g23 9 linear 0.0000% 0 2 3 1 6
g24 2 linear 79.6556% 0 2 0 0 2

Efrén Mezura-Montes Constraint-Handling in Nat-Insp. Opt. CEC 2017, SPAIN 112 / 156



Benchmarks

The second one
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Benchmarks

The most recent
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Performance measures

Evals (number of solution evaluations to find a feasible solution).
Progress ratio (difference between the objective function value of
the first and best feasible solutions found).
AFES (average number of solution evaluations in a set of
successful runs).
FP (percentage of feasible runs).
P (percentage of successful runs).
SP (successful performance computed by AFES divided by P).
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Current trends

Constraint-handling for EMO
EMO approaches usually adopt constraint-handling techniques for
single-objective optimization.
Topics of interest:

Performance measures.
Diversity mechanisms.
Boundary operators.
Many-objective multi-constrained optimization.
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Current trends

Constraint approximation
Fitness approximation methods have been extensively applied to
unconstrained optimization problems.
Jin [47] proposed to enlarge the feasible region by using
surrogates to ease the generation of fesible solutions.
Regis [110] used radial basis functions as surrogates to
approximate constraints and objective functions in constrained
multi-objective optimization problems.
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Current trends

Constraint approximation
Datta and Regis [24] proposed an evolution strategy coupled with
cubic radial basis functions to solve constrained multi-objective
optimization problems.
Miranda-Varela and Mezura-Montes [97] added feasibility
information in the evolution control of a surrogate-assisted
differential evolution to solve constrained optimization problems.
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Current trends

Dynamic constraints
There is a considerable amount of research devoted to deal with
unconstrained dynamic optimization problems.
Initial efforts have focused on constrained dynamic optimization
problems.
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Current trends

Dynamic constraints
Nguyen and Yao [99] started the research on DCOPs, by
providing a benchmark and an initial comparison of algorithms
based mainly on hypermutation and repair methods.
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Current trends

Benchmark
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Current trends

Dynamic constraints
Pal et al. [101] proposed one of the first competitive algorithms for
DCOPs based on the gravitational search algorithm and a repair
method.
Ameca-Alducin et al. [3] proposed a DE-based approach with a
repair mechanism based on sampling to solve DCOPs.
Immigrants and change of DE variants were used as well.
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Current trends

Dynamic constraints
Sharma & Sharma [119] used special operators and Tabu search
concepts to deal with DCOPs.
Aragón et al. [5] proposed a T-cell-inspired approach to solve
DCOPs where four sub-populations with different goals interacted
in the dynamic search space.
Bu et al. [15] proposed two new benchmarks and a dynamic
species-based PSO with an ensemble of tracking feasible regions
strategies.
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Current trends

Ensembles/multi-operator NIAs
This topic is still in its starting phase.
More combinations and adaptive mechanisms within the
ensembles of constraint-handling techniques and/or multi-operator
NIAs are expected.
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Current trends

Theory
There is some work on runtime analysis in constrained search
spaces with EAs [158] and also in the usefulness of infeasible
solutions in the search process [153].
Other theoretical studies have focused on some ES variants, such
as the (1+1)-ES [10] and more recently the (1,�)-ES [9].
More research in this area is required.
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In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of the 5th Parallel Problem Solving from
Nature (PPSN V), pages 211–220, Heidelberg, Germany, September 1998. Amsterdan, The Netherlands,
Springer-Verlag.
Lecture Notes in Computer Science Vol. 1498.

D. G. Kim and P. Husbands.
Riemann Mapping Constraint Handling Method for Genetic Algorithms.
Technical Report CSRP 469, COGS, University of Sussex, UK, 1997.

Efrén Mezura-Montes Constraint-Handling in Nat-Insp. Opt. CEC 2017, SPAIN 137 / 156



References X

D. G. Kim and P. Husbands.
Landscape Changes and the Performance of Mapping Based Constraint Handling Methods.
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