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Introduction Introduction

Multiobjective optimization problem
Minimize
f: X— F

£ (2, m) = (A2, zn)s o S, )

- Xis an n-dimensional decision space

- FCR™is an m-dimensional objective space (m > 2)

Conflicting objectives — a set of optimal solutions

- Pareto set in the decision space
- Pareto front in the objective space

Introduction Introduction

Visualizing solution sets in the objective space
- Interested in sets of mutually nondominated solutions called
approximation sets
- Different from ordinary multidimensional solution sets
- The focus of this tutorial

Challenges

- High dimension and large number of solutions
- Limitations of computing and displaying technologies
- Cognitive limitations

Visualization in multiobjective optimization
Useful for different purposes [13]

- Analysis of solutions and solution sets
- Decision support in interactive optimization
- Analysis of algorithm performance

Visualizing solution sets in the decision space

- Problem-specific

- If X € R™, any method for visualizing multidimensional
solutions can be used

- Not the focus of this tutorial

Visualization can be hard even in 2-D
Stochastic optimization algorithms

- Single run — single approximation set

- Multiple runs — multiple approximation sets
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Visualization of the Empirical Attainment Function (EAF) can be used
in such cases




Introduction

This tutorial is not about

- Visualization for decision making purposes [26]
- Visualization in the decision space

- General multidimensional visualization methods not previously A taxonomy of visualization
used on approximation sets methods

This tutorial covers

- Visualization in the objective space
- Visualization of separate approximation sets [1]

- Visualization of EAF values and differences in EAF values [2]

A taxonomy of visualization methods

Can be formed based on

- (Transformed) objective values
- Distribution of solutions

- Relations among solutions Visualizing approximation sets

- Relations among objectives
- etc.

[More on the taxonomy TBA]




Methodology Benchmark approximation sets

Two different sets that can be instantiated in any dimension [1]

Comparing visualization methods - Linear with a uniform distribution of solutions
- No existing methodology for comparing visualization methods - Spherical with a nonuniform distribution of solutions (more at
- Propose benchmark approximation sets (analog to benchmark the corners and less at the center)
problems in multiobjective optimization) - Sets are intertwined

- Visualize the sets using different methods

. . L Size of each set
- Observe which set properties are distinguishable after '

visualization - 2-D: 50 solutions
- 3-D: 500 solutions

- 4-D: only 300 solutions since most methods cannot handle more
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Benchmark approximation sets Visualizing approximation sets

Desired properties of visualization methods

sotineat 1 Sphoreal . - Preservation of the
08 - Dominance relation
-, - Front shape
0.6 - * - Objective range
- - Distribution of solutions
04 | :

- Robustness
- Handling of large sets

- Simultaneous visualization of multiple sets

02t \
0 1 1 1 b 1 J

- Scalability in number of objectives
- Simplicity




Visualizing approximation sets General methods

- Scatter plot matrix
- Bubble chart

Existing methods . . . o
- Radial coordinate visualization [16, 36]

Showing only methods previously used in multiobjective

L2 - Parallel coordinates [17]
optimization

- Heatmaps [29]

- General methods - Sammon mapping [30, 33]

- Specific methods — designed for visualizing approximation sets - Neuroscale [24, 10]

. o - Self-organizing maps [18, 27]
Demonstration on 4-D benchmark approximation sets o :
- Principal component analysis [39]

- Isomap [31, 21]
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Scatter plot matrix Scatter plot matrix

Most often

- Scatter plot in a 2-D space

- Matrix of all possible combinations

m(m—1

- mobjectives — T2 ) different combinations

Alternatively

- Scatter plot in a 3-D space

- m objectives — w different combinations

Linear
Spherical ®
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Linear

Spherical

Preservation of the

dominance | frontshape | objective | distribution | Robustness Handling of | Simultaneous Scalability | Simplicity
relation range of solutions large sets | visualization
x [ ~ 1T v | = v/ ~ v X v
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Bubble chart

1
0.8
0.6
0.4
0.2

Linear
Spherical

Preservation of the

dominance | frontshape [ objective [ distribution | Ropustness Handling of [Simultaneous| Scalability | Simplicity
relation range of solutions large sets | visualization
x [ ~ I 4 [ ~ v ~ v X 7 ]
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4-D objective space

- Similar to a 3-D scatter plot

- Fourth objective visualized with point size

5-D objective space

- Fifth objective visualized with colors
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Radial coordinate visualization

Also called RadViz

- Inspired from physics ]
1
- Objectives treated as anchors,

equally spaced around the
circumference of a unit circle

- Solutions attached to anchors with % f
‘springs’

- Spring stiffness proportional to the

objective value

f
- Solution placed where the spring ’

forces are in equilibrium

21




Parallel coordinates

Radial coordinate visualization

Linear
Spherical ®

- m objectives — m parallel axes
- Solution represented as a polyline with vertices on the axes
- Position of each vertex corresponds to that objective value

- No loss of information

Preservation of the .
dominance | front shape | objective | distribution | robustness | H2ndling of |Simultaneous Scalability | Simplicity
relation range of solutions large sets | visualization
X [ X [ X [ ~ v/ ~ v v v
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Heatmaps
Linear Spherical
1 T T
0.8 |
0.6 |
- m objectives — m columns
0.4 | .
- One solution per row
0.2 - Each cell colored according to objective value
0 - No loss of information
f, , fa f,
P t f th
dominance frontr:fwzr;;ls ‘onoobjecfive distribution | Robustness | andling of |Simultaneous| Scalability | Simplicity
relation range of solutions large sets | visualization
~ ] X [ v/ [ = v/ X X v/ v/
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Heatmaps Sammon mapping

Linear Spherical

- A non-linear mapping

- Aims to preserve distances between solutions
- dj; distance between solutions x; and x; in the objective space

- dj distance between solutions x; and x; in the visualized space

- Stress function to be minimized

S=3" (dy - dy)?

i >

- Minimization by gradient descent or other (iterative) methods

Preservation of the .
dominance | front shape objective distribution | robustness Handling of |Simultaneous| Scalability Simplicity
relation range of solutions large sets | visualization
x [ x [~ T x v X X v 7
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Sammon mapping Sammon mapping
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Neuroscale Neuroscale
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- A non-linear mapping § ’& ,.-‘.."'.o‘,."’,"
o »® o
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- Aims to minimize the same stress function as Sammon mapping E 0 ',.'h., '..*3
. . . S yk%" o 3 o}
- Uses a radial basis function neural network to model the 2 .3 »
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projection o o o’
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30 31
Neuroscale Self-organizing maps
Linear
Spherical e

08
- Self-organizing maps (SOMs) are neural networks
04
- Nearby solutions are mapped to nearby neurons in the SOM
Thid 0 |
coordinate - A SOM can be visualized using the unified distance matrix
0.4 . . . .
Sa 08 - Distance between adjacent neurons is denoted with color
08 OSe(.:ond - Similar neurons — light color
08'0'4 coordinate - Different neurons (cluster boundaries) — dark color
coordinate 1.2
Preservation of the
dominance | front shape | objective | distribution | robustness | Handling of |Simultaneous Scalability | Simplicity
relation range of solutions large sets | visualization
X [ X [ X [ X ~ =~ v v/ X
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Self-organizing maps

Principal component analysis

Linear
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Principal component analysis
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Preservation of the
dominance | front shape | objective | distibution | robustness | Handling of |Simultaneous Scalability | Simplicity
relation range of solutions large sets | visualization
X [ X [ X [ X ~ ~ v v X
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- Principal components are linear combinations of objectives that
maximize variance (and are uncorrelated with already chosen
components)

- They are the eigenvectors with the highest eigenvalues of the
covariance matrix

35

Isomap

- Assumes solutions lie on some low-dimensional manifold and
the distances along this manifold should be preserved

- Creates a graph of solutions, where only the neighboring
solutions are linked

- The geodesic distance between any two solutions is calculated
as the sum of Euclidean distances on the shortest path between
the two solutions

- Uses multidimensional scaling to perform the mapping based
on these distances

37




Isomap
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Summary of the general methods

Isomap
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Specific methods

Preservation of the

Method dominance | frontshape | objective | Gistibution | popustness | "2ndUNg of [Simuttaneous g n sy
relation range of solutions large sets | visualization
Scatter plot matrix X ~ v ~ v ~ v X v
Bubble chart X ~ 4 ~ 4 ~ 4 X 4
Radial coordinate visual. X X X I 4 ~ v 4 4
Parallel coordinates ~ X v ~ v X X 4 4
Heatmaps X X v X v X X v v
Sammon mapping X X X v ~ ~ v v X
Neuroscale X X X X ~ ~ 4 4 X
Self-organizing maps X X X X ~ v X v X
Principal component analysis X X X X ~ ~ v v X
Isomap 3 X I3 ~ ~ ~ v v X
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- Distance and distribution charts [4]

Interactive decision maps [23]

- Hyper-space diagonal counting [3]
- Two-stage mapping [20]

- Level diagrams [6]

- Hyper-radial visualization [8]

- Pareto shells [35]

- Seriated heatmaps [36]

- Multidimensional scaling [36]

- Prosections [1]

4




- Plot solutions against their distance to the Pareto front and
distance to other solutions

- Distance chart
- Plot distance to the nearest non-dominated solution

- Distribution chart
- Sort solutions w.r.t. first objective
- Plot distances between consecutive solutions

- For the first/last solution, compute distance to first/last
non-dominated solution

- ksolutions — k+ 1 distances

- All distances normalized to [0, 1]
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Interactive decision maps Interactive decision maps

The Edgeworth-Pareto hull (EPH) of an approximation set A contains
all points in the objective space that are weakly dominated by any
solution in A.

Interactive decision maps

- Visualize the surface of the EPH, not the actual approximation
set

- Plot a number of axis-aligned sampling surfaces of the EPH
- Color used to denote third objective

- Fixed value of the forth objective

"

Distance and distribution charts Distance and distribution charts
1
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Linear

Spherical
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Hyper-space diagonal counting Hyper-space diagonal counting

Linear
- Inspired by Cantor’s proof that shows |N| = |N?| = |N3|... Spherical
o
(1,3) (23
\ \
(1,20 (22 62 2 J
NN S 6 ‘ I
p=}
tLhH—@1n @1 @1 3 4 \ 80
iy T S
5 2
E
- Discretize each objective (choose a number of bins) R 40" 1.4, bins
- In the 4-D case
- Enumerate the bins for objectives f; and f» ff2 bins 80 0
- Enumerate the bins for objectives f3 and f4
- Plot the number of solutions in each pair of bins
Preservation of the
dominance | front shape | objective | distribution | robustness | 2ndling of |Simultaneous Scalability | Simplicity
relation range of solutions large sets | visualization
X [ X [ X [ =~ v [ v [ v [ v [ =~ ]
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Two-stage mapping Two-stage mapping
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0.2 o ° 4 . °
. . . . . L] L]
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distances in the objective space °, 01 02 03 04 05 06
- Second stage: map each dominated solution to the minimal —
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relation range of solutions large sets | visualization
~ [ X [ X [ X X X v/ ~ X
48 49




Level diagrams

- m objectives — m diagrams

- Plot solutions with objective f; on the z axis and distance to the
ideal point on the y axis

50

Hyper-radial visualization

- Solutions preserve distance (hyper-radius) to the ideal point
- Distances are computed separately for two subsets of objectives

- Indifference curves denote points with the same preference
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Level diagrams
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Hyper-radial visualization
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Pareto shells

- Use nondominated sorting to split solutions to Pareto shells
- Represent solutions in a graph

- Connect dominated solutions to those that dominate them (we
show only one arrow per dominated solution)
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Pareto shells
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Seriated heatmaps

- Heatmaps with rearranged objectives and solutions
- Similar objectives and similar solutions are placed together

- Ranks are used instead of actual objective values for a more
uniform color usage

- Similarity can be computed using
- Euclidean distance
- Spearman’s footrule
- Kendall's 7 metric
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Multidimensional scaling

- Classical multidimensional scaling aims at preserving
similarities between solutions

- Here, dominance distance is used to measure similarity

- Two solutions are similar if they share dominance relationships
with a third solution

m

i=1

+ I((a; > 2z) A (b > z))]

D(aab) = k 92 (175(aab;z))
z¢{a,b}
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Prosections
- Visualize only part of the objective space
- Dimensionality reduction by projection of solutions in a section
- Need to choose prosection plane, angle and section width
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Spherical e Linear
08 | Spherical e
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fify
Before prosection After prosection
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Multidimensional scaling
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Prosections

300 solutions

Linear
Spherical °

3000 solutions

Linear
Spherical e

Preservation of the
dominance | front shape | objective | distibution | robustness | andling of |Simultaneous Scalability | Simplicity
relation range of solutions large sets | visualization
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Method

Preservation of the

dominance
relation

front shape

objective
range

distribution
of solutions

Robustness

Handling of
large sets

Simultaneous|
visualization

Scalability

Simplicity

Distance and distrib. charts

X

<~

Interactive decision maps

Hyper-space diagonal count.

Two-stage mapping

Level diagrams

Hyper-radial visualization

Pareto shells

Seriated heatmaps

Multidimensional scaling
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Prosections

Summary of the specific methods
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Visualizing EAF values and

differences

Other (newer) methods

- Treemaps [37]
- MoGrams [32]
- Polar plots [15]

- Aggregation trees [12]

- Tetrahedron coordinates model [5]

- Trade-off region maps [28]

[More on the newer methods TBA]

- Level diagrams with asymmetric norm [7]

- Distance-based and dominance-based mappings [11]

- Visualization following Shneiderman mantra [19]
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Empirical attainment function

Goal-attainment

- Approximation set 4

1.2

- A point in the objective space z is
weakly dominated by at least one solution from A

0.8 |
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1 e g
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°
°
L)
L)
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1

1.2

by A when z is
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Empirical attainment function Empirical attainment function

EAF values [14] Differences in EAF values [22]
- Algorithm A, approximation sets Ay, 4s,..., A, - Algorithm A, approximation sets Ay, 4a,..., A,
- EAF of z is the frequency of attaining z by Aq, 4s,..., A, - Algorithm B, approximation sets By, B, ..., B,
- Summary (or k%-) attainment surfaces - Visualize differences between EAF values
1.2 1.2

1.2 ; 1.2
1 L.._ f 1
1 0.8 - l b 0.8
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Visualization of 3-D EAF Benchmark approximation sets

Need to compute and visualize a large number (over 10 000) of Sets of approximation sets

cuboids - 5 linear approximation sets with a uniform distribution of

solutions (100 solutions in each)

Exact case , . ‘ . . T
- 5 spherical approximation sets with a nonuniform distribution

- EAF values: Slicing [2] of solutions (100 solutions in each)
- EAF differences: Slicing, Maximum intensity projection [38, 2]

1 Linear
Spherical
0.8

Approximated case o

- EAF values: Slicing, Direct volume rendering [9, 2] 04
0.2

- EAF differences: Slicing, Maximum intensity projection, Direct ®
volume rendering
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Exact 3-D EAF values and differences

Slicing
- Visualize cuboids intersecting the slicing plane
- Need to choose coordinate and angle

69

Exact 3-D EAF differences

Maximum intensity projection

- Volume rendering method for spatial data represented by voxels
- Simple and efficient
- No sense of depth, cannot distinguish between front and back

Projection plane \A
Viewpoint

© Christian Lackas

al

Exact 3-D EAF values and differences

Slicing

0.6

0.4r

1

02 04 06 08 1 1.2 01] 02 04 06 08 1 1.2

0() 02 04 06 08 1 1.2

Slice of Lin Slice of Sph Slice of Lin-Sph and
atp =5° at p =5° Sph-Lin at ¢ = 5°
0.8 0.8 ll?%*h
0.4 0.4 0.4r ‘
0.2 0.2 0.2
L

0 0 0

0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2

Slice of Lin Slice of Sph Slice of Lin-Sph and
at ¢ = 45° at ¢ = 45° Sph-Lin at p = 45°
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Exact 3-D EAF differences

Maximum intensity projection
- Suitable for visualizing EAF differences (focus on large
differences)
- Sorting w.r.t. EAF differences (smaller to larger)
- Plot on top of previous ones
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The approximated case Approximated 3-D EAF differences

Discretization into voxels

- Discretization of cuboids

- Discretization from the space of EAF values/differences

Slicing

08 0.8 l: 08 l:I 08 —

06 L] * 06 ! ‘ 06 [ 1 L 06 | +
Exact 643 voxels 1282 voxels 2563 voxels
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Approximated 3-D EAF values and differences Approximated 3-D EAF differences

Direct volume rendering

- Volume rendering method for spatial data represented by voxels

- A assigns color and opacity to voxel values
- Enables to see “inside the volume”

- Requires the definition of the transfer function
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Maximum intensity projection

- Plots produced using Voreen [25, 34]
- Some loss of information
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Direct volume rendering of Lin-Sph

1/5 2/5

4/5 5/5

3/5

1/5and 5/5
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Approximated 3-D EAF differences Approximated 3-D EAF values

Direct volume rendering of Sph-Lin

Direct volume rendering of Sph

1/5and 5/5
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1/5 2/5 3/5
4/5 5/5 1/5and 5/5
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Summary

Summary - Visualization of approximation sets

General methods

- Scatter plot matrix

- Bubble chart

- Radial coordinate visualization
- Parallel coordinates

- Heatmaps

- Sammon mapping

- Neuroscale

- Self-organizing maps

- Principal component analysis

- Isomap

Specific methods

- Distance and distribution charts
- Interactive decision maps

- Hyper-space diagonal counting
- Two-stage mapping

- Level diagrams

- Hyper-radial visualization

- Pareto shells

- Seriated heatmaps

- Multidimensional scaling

- Prosections
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Exact 3-D case Approximated 3-D case

FAF values FAF values - Visualization in multiobjective optimization needed for various
- Slicing - Slicing purposes

EAF differences - Direct volume rendering - General methods fail to address the peculiarities of

_ approximation set visualization
- Slicing EAF differences . . . .
- Customized methods give more information and are currently
- Maximum intensity projection - Slicing gaining attentions
- Maximum intensity projection

- Direct volume rendering
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