

Visualization in Multiobjective Optimization

Bogdan Filipič Tea Tušar

CEC Tutorial, Donostia - San Sebastián, June 5, 2017

Computational Intelligence Group Department of Intelligent Systems Jožef Stefan Institute Ljubljana, Slovenia

The final version will be available at http://dis.ijs.si/tea/research.htm

Contents

Introduction

A taxonomy of visualization methods

Visualizing approximation sets

Visualizing EAF values and differences

Summary

References

Introduction

Introduction

Multiobjective optimization problem

Minimize

$$\mathbf{f} \colon X \to F$$

$$\mathbf{f} \colon (x_1, \dots, x_n) \mapsto (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))$$

- X is an n-dimensional decision space
- $F \subseteq \mathbb{R}^m$ is an m-dimensional objective space $(m \ge 2)$

Conflicting objectives \rightarrow a set of optimal solutions

- · Pareto set in the decision space
- · Pareto front in the objective space

4

Introduction

Visualization in multiobjective optimization

Useful for different purposes [13]

- · Analysis of solutions and solution sets
- Decision support in interactive optimization
- · Analysis of algorithm performance

Visualizing solution sets in the decision space

- · Problem-specific
- If $X \subseteq \mathbb{R}^m$, any method for visualizing multidimensional solutions can be used
- · Not the focus of this tutorial

5

Introduction

Visualizing solution sets in the objective space

- Interested in sets of mutually nondominated solutions called approximation sets
- · Different from ordinary multidimensional solution sets
- The focus of this tutorial

Challenges

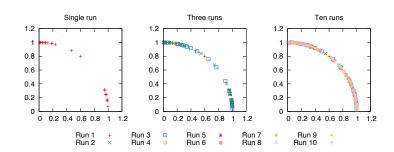
- · High dimension and large number of solutions
- · Limitations of computing and displaying technologies
- Cognitive limitations

Introduction

Visualization can be hard even in 2-D

Stochastic optimization algorithms

- · Single run \rightarrow single approximation set
- Multiple runs → multiple approximation sets



Visualization of the Empirical Attainment Function (EAF) can be used in such cases

Introduction

This tutorial is not about

- · Visualization for decision making purposes [26]
- · Visualization in the decision space
- General multidimensional visualization methods not previously used on approximation sets

This tutorial covers

- · Visualization in the objective space
- · Visualization of separate approximation sets [1]
- · Visualization of EAF values and differences in EAF values [2]

A taxonomy of visualization methods

O

A taxonomy of visualization methods

Can be formed based on

- (Transformed) objective values
- Distribution of solutions
- Relations among solutions
- · Relations among objectives
- · etc.

[More on the taxonomy TBA]

Visualizing approximation sets

Methodology

Comparing visualization methods

- No existing methodology for comparing visualization methods
- Propose benchmark approximation sets (analog to benchmark problems in multiobjective optimization)
- · Visualize the sets using different methods
- Observe which set properties are distinguishable after visualization

10

Benchmark approximation sets

Two different sets that can be instantiated in any dimension [1]

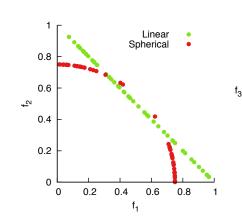
- · Linear with a uniform distribution of solutions
- Spherical with a nonuniform distribution of solutions (more at the corners and less at the center)
- Sets are intertwined

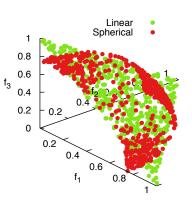
Size of each set

- · 2-D: 50 solutions
- 3-D: 500 solutions
- 4-D: only 300 solutions since most methods cannot handle more

11

Benchmark approximation sets





Visualizing approximation sets

Desired properties of visualization methods

- Preservation of the
 - · Dominance relation
 - Front shape
 - Objective range
 - · Distribution of solutions
- Robustness
- Handling of large sets
- · Simultaneous visualization of multiple sets
- · Scalability in number of objectives
- Simplicity

Visualizing approximation sets

Existing methods

Showing only methods previously used in multiobjective optimization

- General methods
- · Specific methods designed for visualizing approximation sets

Demonstration on 4-D benchmark approximation sets

14

General methods

- Scatter plot matrix
- · Bubble chart
- · Radial coordinate visualization [16, 36]
- Parallel coordinates [17]
- · Heatmaps [29]
- · Sammon mapping [30, 33]
- Neuroscale [24, 10]
- · Self-organizing maps [18, 27]
- Principal component analysis [39]
- · Isomap [31, 21]

15

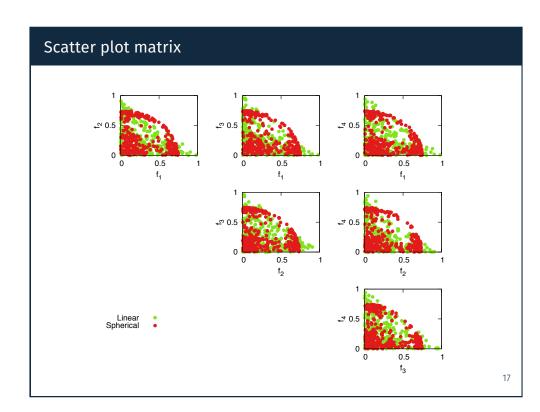
Scatter plot matrix

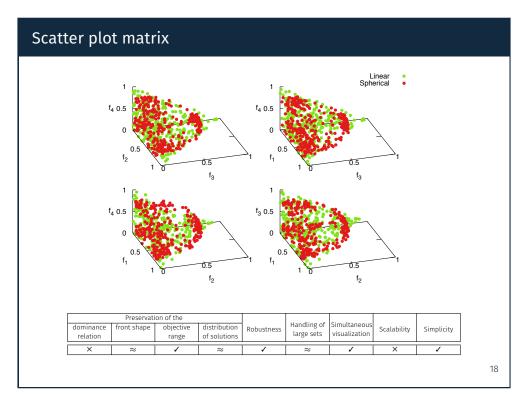
Most often

- · Scatter plot in a 2-D space
- · Matrix of all possible combinations
- · m objectives $ightarrow rac{m(m-1)}{2}$ different combinations

Alternatively

- · Scatter plot in a 3-D space
- m objectives $ightarrow rac{m(m-1)(m-2)}{6}$ different combinations





Bubble chart

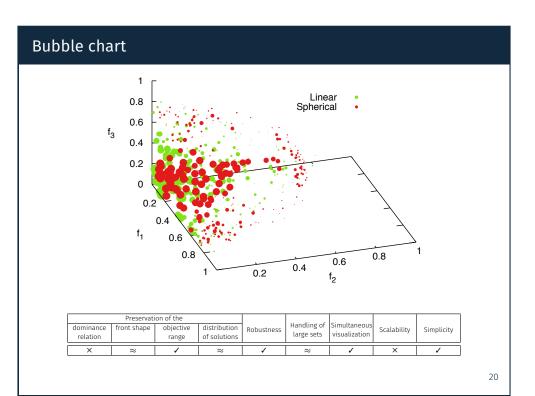
4-D objective space

- · Similar to a 3-D scatter plot
- Fourth objective visualized with point size

5-D objective space

Fifth objective visualized with colors

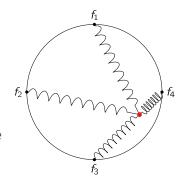
19

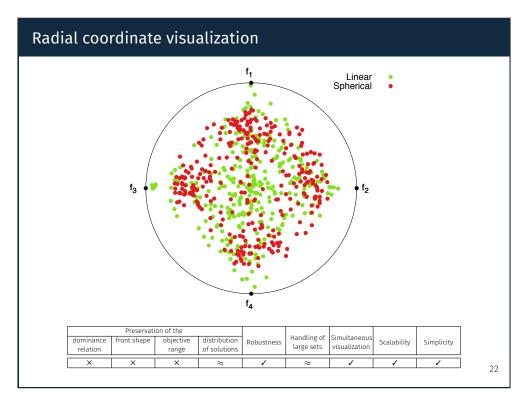


Radial coordinate visualization

Also called RadViz

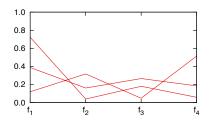
- Inspired from physics
- Objectives treated as anchors, equally spaced around the circumference of a unit circle
- Solutions attached to anchors with f₂ (springs')
- Spring stiffness proportional to the objective value
- Solution placed where the spring forces are in equilibrium





Parallel coordinates

- m objectives $\rightarrow m$ parallel axes
- · Solution represented as a polyline with vertices on the axes
- · Position of each vertex corresponds to that objective value
- · No loss of information



23

Heatmaps

- m objectives $\rightarrow m$ columns
- One solution per row
- Each cell colored according to objective value
- No loss of information

Heatmaps Linear Spherical 8.0 1.0 0.9 0.7 0.8 0.6 0.7 0.5 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.0 0.0 f_4 f_4 Preservation of the Handling of Simultaneou dominance Scalability Simplicity large sets

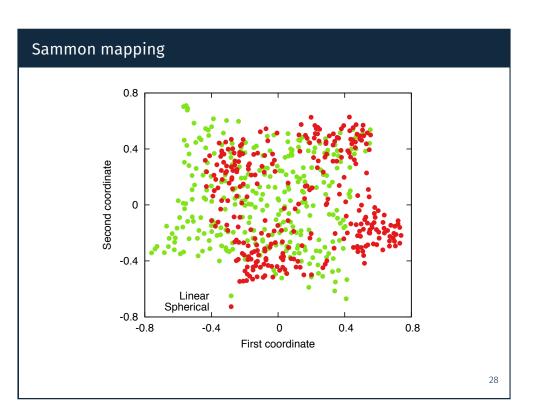
Sammon mapping

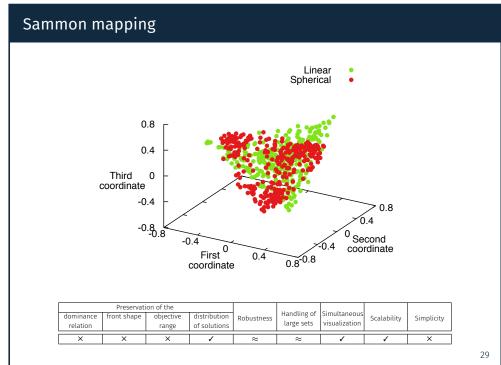
- · A non-linear mapping
- · Aims to preserve distances between solutions
 - \cdot d_{ij}^* distance between solutions \mathbf{x}_i and \mathbf{x}_j in the objective space
 - · d_{ij} distance between solutions \mathbf{x}_i and \mathbf{x}_j in the visualized space
- · Stress function to be minimized

$$S = \sum_{i} \sum_{j>i} (d_{ij}^* - d_{ij})^2$$

27

· Minimization by gradient descent or other (iterative) methods





Neuroscale

- · A non-linear mapping
- · Aims to minimize the same stress function as Sammon mapping
- Uses a radial basis function neural network to model the projection

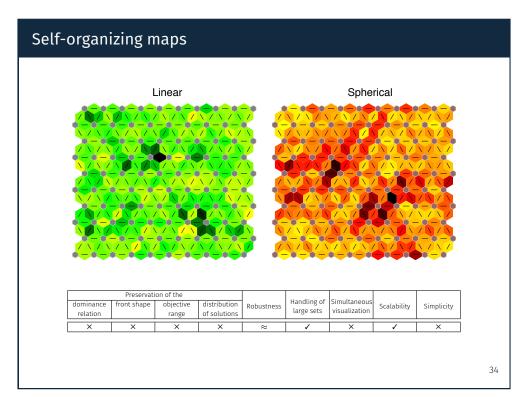
30

Neuroscale 1.2 8.0 Second coordinate 0.4 0 -0.8 Linear Spherical -1.2 -1.2 -0.8 0.4 8.0 1.2 First coordinate 31

Neuroscale Linear Spherical 8.0 0.4 Third coordinate -0.4 -0.8 L Second First Coordinate coordinate Preservation of the Handling of Scalability Simplicity visualization large sets relation range of solutions 32

Self-organizing maps

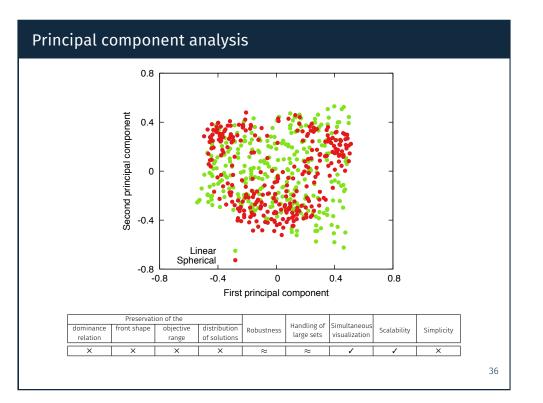
- Self-organizing maps (SOMs) are neural networks
- Nearby solutions are mapped to nearby neurons in the SOM
- · A SOM can be visualized using the unified distance matrix
- · Distance between adjacent neurons is denoted with color
 - Similar neurons \rightarrow light color
 - Different neurons (cluster boundaries) \rightarrow dark color



Principal component analysis

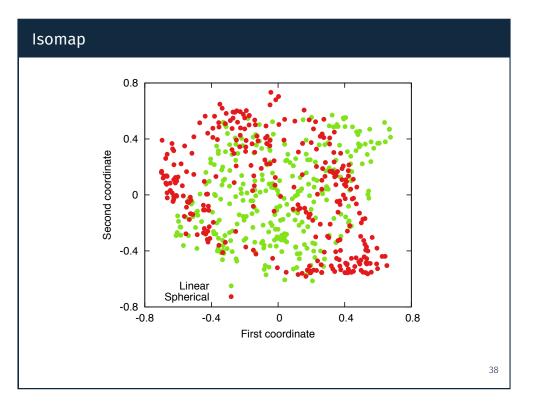
- Principal components are linear combinations of objectives that maximize variance (and are uncorrelated with already chosen components)
- They are the eigenvectors with the highest eigenvalues of the covariance matrix

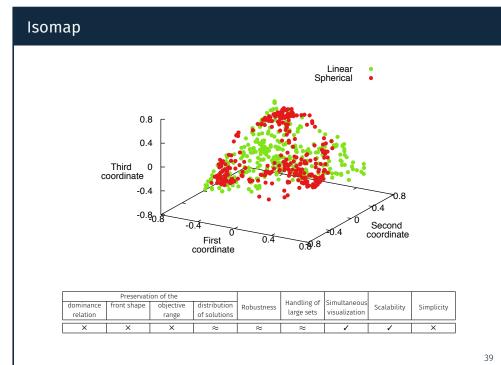
35



Isomap

- Assumes solutions lie on some low-dimensional manifold and the distances along this manifold should be preserved
- Creates a graph of solutions, where only the neighboring solutions are linked
- The geodesic distance between any two solutions is calculated as the sum of Euclidean distances on the shortest path between the two solutions
- Uses multidimensional scaling to perform the mapping based on these distances





Summary of the general methods

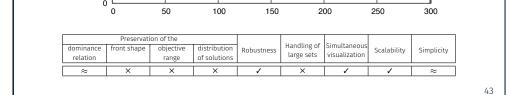
Method	Preservation of the								
	dominance relation	front shape	objective range	distribution of solutions	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
Scatter plot matrix	×	*	1	*	/	~	1	×	1
Bubble chart	×	~	1	~	/	~	/	×	/
Radial coordinate visual.	×	×	×	~	1	~	/	/	/
Parallel coordinates	*	×	1	*	/	×	×	/	/
Heatmaps	×	×	/	×	/	×	×	✓	1
Sammon mapping	×	×	×	1	~	~	/	1	×
Neuroscale	×	×	×	×	≈	~	/	/	×
Self-organizing maps	×	×	×	×	~	1	×	1	×
Principal component analysis	×	×	×	×	≈	~	/	/	×
Icoman		~		~	~	~	/		

Specific methods

- Distance and distribution charts [4]
- Interactive decision maps [23]
- · Hyper-space diagonal counting [3]
- Two-stage mapping [20]
- · Level diagrams [6]
- Hyper-radial visualization [8]
- Pareto shells [35]
- Seriated heatmaps [36]
- Multidimensional scaling [36]
- Prosections [1]

Distance and distribution charts

- Plot solutions against their distance to the Pareto front and distance to other solutions
- · Distance chart
 - · Plot distance to the nearest non-dominated solution
- · Distribution chart
 - · Sort solutions w.r.t. first objective
 - Plot distances between consecutive solutions
 - For the first/last solution, compute distance to first/last non-dominated solution
 - k solutions $\rightarrow k+1$ distances
- All distances normalized to [0,1]



300

Linear

Distance and distribution charts

0.8

0.4

0.2

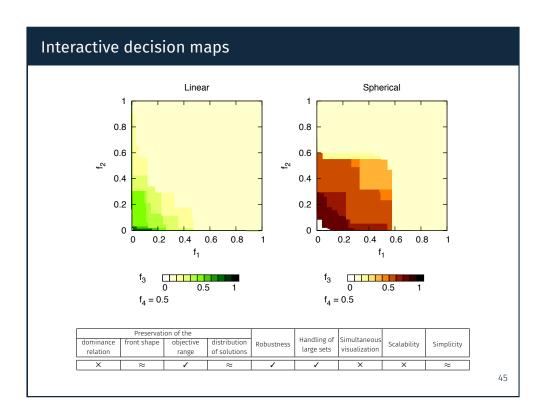
0.8

Interactive decision maps

The Edgeworth-Pareto hull (EPH) of an approximation set A contains all points in the objective space that are weakly dominated by any solution in A.

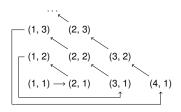
Interactive decision maps

- Visualize the surface of the EPH, not the actual approximation set
- Plot a number of axis-aligned sampling surfaces of the EPH
- \cdot Color used to denote third objective
- Fixed value of the forth objective



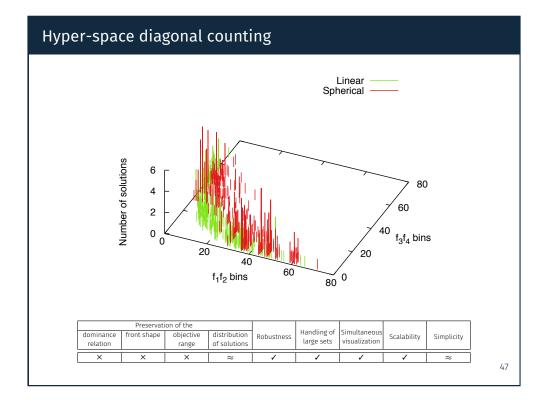
Hyper-space diagonal counting

• Inspired by Cantor's proof that shows $|\mathbb{N}| = |\mathbb{N}^2| = |\mathbb{N}^3| \dots$



- · Discretize each objective (choose a number of bins)
- In the 4-D case
 - \cdot Enumerate the bins for objectives f_1 and f_2
 - Enumerate the bins for objectives f_3 and f_4
 - · Plot the number of solutions in each pair of bins

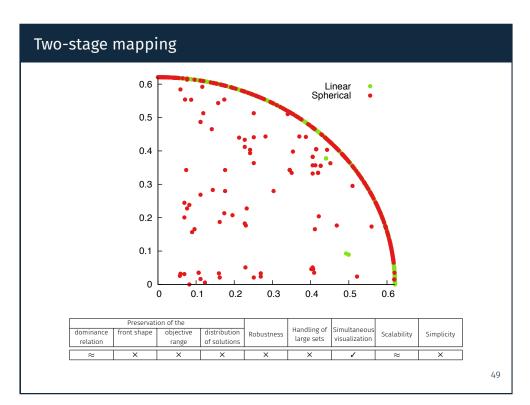
46



Two-stage mapping

Steps

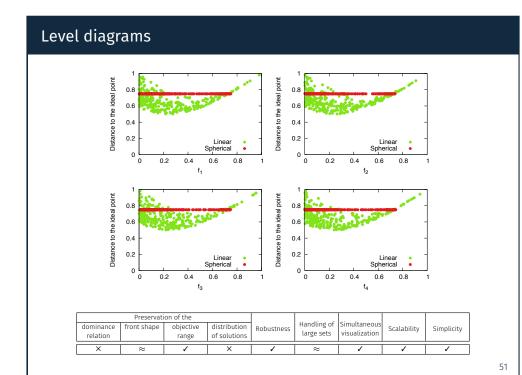
- · Split solutions to nondominated and dominated solutions
- \cdot Compute r as the average norm of nondominated solutions
- Find a permutation of nondominated solutions that minimizes implicit dominance errors and sum of distances between consecutive solutions
- First stage: distribute nondominated solutions on the circumference of a quarter-circle with radius r in the order of the permutation and with distances proportional to their distances in the objective space
- Second stage: map each dominated solution to the minimal point of all nondominated solutions that dominate it



Level diagrams

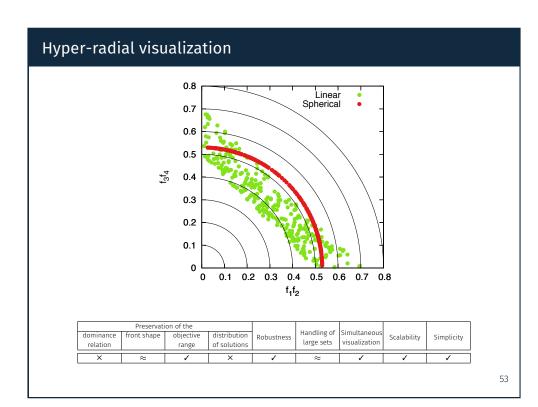
- m objectives $\rightarrow m$ diagrams
- Plot solutions with objective f_i on the x axis and distance to the ideal point on the y axis

50



Hyper-radial visualization

- · Solutions preserve distance (hyper-radius) to the ideal point
- $\boldsymbol{\cdot}$ Distances are computed separately for two subsets of objectives
- $\boldsymbol{\cdot}$ Indifference curves denote points with the same preference



Pareto shells

- Use nondominated sorting to split solutions to Pareto shells
- · Represent solutions in a graph
- Connect dominated solutions to those that dominate them (we show only one arrow per dominated solution)

............

Shell 1

Linear

55

•••••

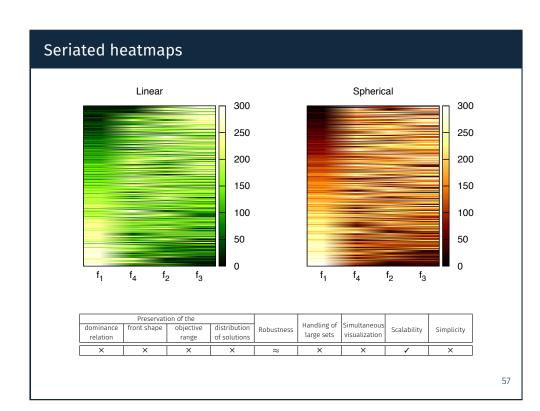
Shell 0

54

Pareto shells

Seriated heatmaps

- · Heatmaps with rearranged objectives and solutions
- \cdot Similar objectives and similar solutions are placed together
- Ranks are used instead of actual objective values for a more uniform color usage
- · Similarity can be computed using
 - · Euclidean distance
 - · Spearman's footrule
 - Kendall's au metric



Multidimensional scaling

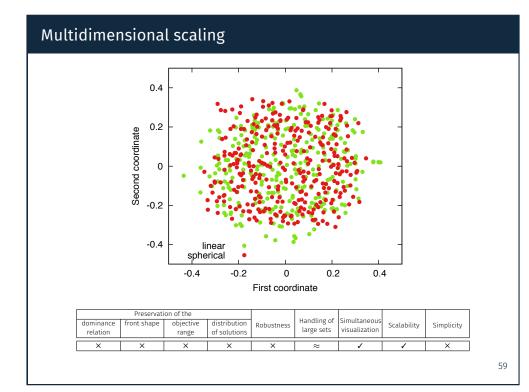
- Classical multidimensional scaling aims at preserving similarities between solutions
- Here, dominance distance is used to measure similarity
- Two solutions are similar if they share dominance relationships with a third solution

$$S(\mathbf{a}, \mathbf{b}; \mathbf{z}) = \frac{1}{m} \sum_{i=1}^{m} [I((a_i < z_i) \land (b_i < z_i)) + I((a_i = z_i) \land (b_i = z_i))$$

$$+ I((a_i > z_i) \land (b_i > z_i))]$$

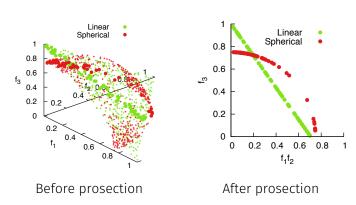
$$D(\mathbf{a}, \mathbf{b}) = \frac{1}{k-2} \sum_{\mathbf{z} \notin \{\mathbf{a}, \mathbf{b}\}} (1 - S(\mathbf{a}, \mathbf{b}; \mathbf{z}))$$

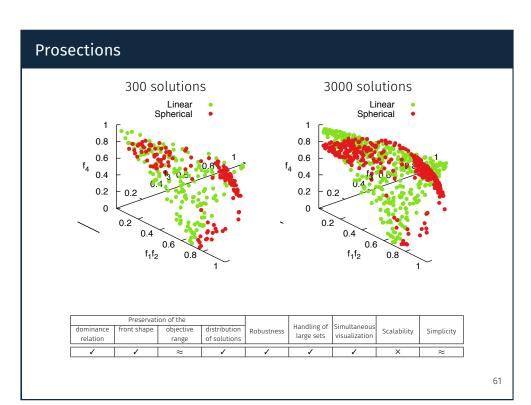
00



Prosections

- · Visualize only part of the objective space
- Dimensionality reduction by projection of solutions in a section
- · Need to choose prosection plane, angle and section width





Summary of the specific methods

Method	Preservation of the								
	dominance	front shape	objective	distribution	Robustness	Handling of large sets	Simultaneous visualization	Scalability	Simplicity
	relation		range	of solutions					
Distance and distrib. charts	≈	×	×	×	/	×	/	/	≈
Interactive decision maps	×	~	1	~	/	/	×	×	*
Hyper-space diagonal count.	×	×	×	~	1	/	/	/	~
Two-stage mapping	~	×	×	×	×	×	/	≈	×
Level diagrams	×	≈	/	×	/	~	/	✓	1
Hyper-radial visualization	×	~	1	×	1	~	/	1	/
Pareto shells	/	×	×	×	×	×	/	/	/
Seriated heatmaps	×	×	×	×	≈	×	×	1	×
Multidimensional scaling	×	×	×	×	×	~	/	/	×
Prosections	/	/	*	1	/	/	/	×	~

Other (newer) methods

- · Tetrahedron coordinates model [5]
- · Distance-based and dominance-based mappings [11]
- Aggregation trees [12]
- Trade-off region maps [28]
- Treemaps [37]
- · MoGrams [32]
- Polar plots [15]
- Level diagrams with asymmetric norm [7]
- · Visualization following Shneiderman mantra [19]

[More on the newer methods TBA]

[More on the newer methods 1DA

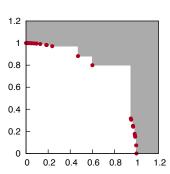
62

Visualizing EAF values and differences

Empirical attainment function

Goal-attainment

- \cdot Approximation set A
- A point in the objective space ${\bf z}$ is attained by A when ${\bf z}$ is weakly dominated by at least one solution from A

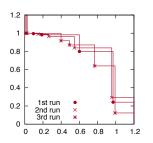


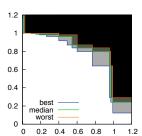
0.

Empirical attainment function

EAF values [14]

- Algorithm \mathcal{A} , approximation sets A_1, A_2, \ldots, A_r
- EAF of **z** is the frequency of attaining **z** by A_1, A_2, \ldots, A_r
- Summary (or k%-) attainment surfaces



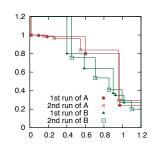


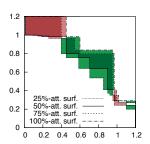
65

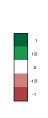
Empirical attainment function

Differences in EAF values [22]

- · Algorithm \mathcal{A} , approximation sets A_1, A_2, \ldots, A_r
- Algorithm \mathcal{B} , approximation sets B_1, B_2, \ldots, B_r
- · Visualize differences between EAF values







00

Visualization of 3-D EAF

Need to compute and visualize a large number (over 10 000) of cuboids

Exact case

- EAF values: Slicing [2]
- EAF differences: Slicing, Maximum intensity projection [38, 2]

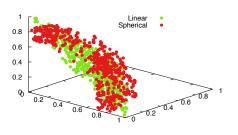
Approximated case

- EAF values: Slicing, Direct volume rendering [9, 2]
- EAF differences: Slicing, Maximum intensity projection, Direct volume rendering

Benchmark approximation sets

Sets of approximation sets

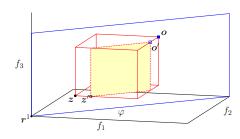
- 5 linear approximation sets with a uniform distribution of solutions (100 solutions in each)
- 5 spherical approximation sets with a nonuniform distribution of solutions (100 solutions in each)



Exact 3-D EAF values and differences

Slicing

- · Visualize cuboids intersecting the slicing plane
- · Need to choose coordinate and angle



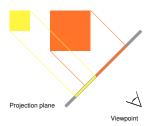
69

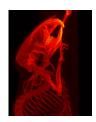
Slicing Slicing Slice of Lin at $\varphi=5^\circ$ Slice of Lin at $\varphi=45^\circ$ Sph-Lin at $\varphi=45^\circ$

Exact 3-D EAF differences

Maximum intensity projection

- \cdot Volume rendering method for spatial data represented by voxels
- Simple and efficient
- \cdot No sense of depth, cannot distinguish between front and back





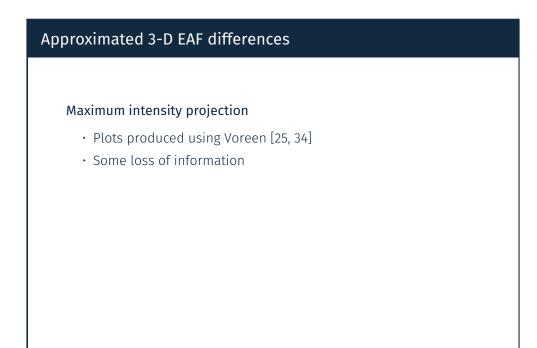
© Christian Lackas

Exact 3-D EAF differences

Maximum intensity projection

- Suitable for visualizing EAF differences (focus on large differences)
- · Sorting w.r.t. EAF differences (smaller to larger)
- Plot on top of previous ones

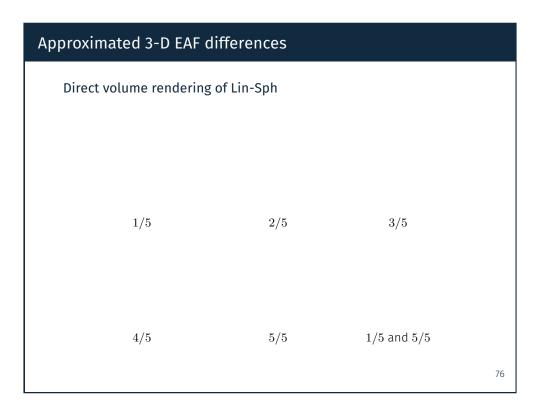
Discretization into voxels • Discretization of cuboids • Discretization from the space of EAF values/differences Slicing • Discretization from the space of EAF values/differences



Approximated 3-D EAF values and differences

Direct volume rendering

- · Volume rendering method for spatial data represented by voxels
- · A transfer function assigns color and opacity to voxel values
- Enables to see "inside the volume"
- · Requires the definition of the transfer function



Approximated 3-D EAF differences Direct volume rendering of Sph-Lin 1/5 2/5 3/5 4/5 5/5 1/5 and 5/5

Direct volume rendering of Sph 1/5 and 5/5

Summary

Summary – Visualization of approximation sets

General methods

- Scatter plot matrix
- · Bubble chart
- · Radial coordinate visualization
- Parallel coordinates
- Heatmaps
- Sammon mapping
- Neuroscale
- · Self-organizing maps
- Principal component analysis
- Isomap

Specific methods

- · Distance and distribution charts
- · Interactive decision maps
- · Hyper-space diagonal counting
- Two-stage mapping
- Level diagrams
- · Hyper-radial visualization
- Pareto shells
- Seriated heatmaps
- · Multidimensional scaling
- Prosections

Summary - Visualization of EAFs

Exact 3-D case

EAF values

Slicing

EAF differences

- Slicing
- Maximum intensity projection

Approximated 3-D case

EAF values

- Slicing
- · Direct volume rendering

EAF differences

- Slicing
- Maximum intensity projection
- · Direct volume rendering

80

Summary

- Visualization in multiobjective optimization needed for various purposes
- General methods fail to address the peculiarities of approximation set visualization
- Customized methods give more information and are currently gaining attentions

81

Acknowledgement

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0209 and project No. Z2-8177 Incorporating real-world problems into the benchmarking of multiobjective optimizers).

This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 692286.

SYNFRGY

Synergy for Smart Multi-Objective Optimization

www.synergy-twinning.eu

References

References I

[1] T. Tušar and B. Filipič.

Visualization of Pareto front approximations in evolutionary multiobjective optimization: A critical review and the prosection method.

IEEE Transactions on Evolutionary Computation, 19(2):225-245, 2015.

[2] T. Tušar and B. Filipič.

Visualizing exact and approximated 3D empirical attainment functions.

Mathematical Problems in Engineering, Article ID 569346, 18 pages, 2014.

References II

[3] G. Agrawal, C. L. Bloebaum, and K. Lewis.
Intuitive design selection using visualized n-dimensional
Pareto frontier.

American Institute of Aeronautics and Astronautics, 2005.

[4] K. H. Ang, G. Chong, and Y. Li.
Visualization technique for analyzing nondominated set comparison.

SEAL '02, pages 36-40, 2002.

[5] X. Bi and B. Li.

The visualization decision-making model of four objectives based on the balance of space vector.

IHMSC 2012, pages 365-368, 2014.

84

References III

[6] X. Blasco, J. M. Herrero, J. Sanchis, and M. Martínez. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. *Information Sciences*, 178(20):3908–3924, 2008.

[7] X. Blasco, G. Reynoso-Mezab, E. A. Sanchez Perez, and I. V. Sanchez Perez.

Asymmetric distances to improve n-dimensional Pareto fronts graphical analysis.

Information Sciences, 340-341:228-249, 2016.

[8] P.-W. Chiu and C. Bloebaum.

Hyper-radial visualization (HRV)

Hyper-radial visualization (HRV) method with range-based preferences for multi-objective decision making.

Structural and Multidisciplinary Optimization, 40(1–6):97–115, 2010.

References IV

[9] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf.

Real-time Volume Graphics.

A. K. Peters, Natick, MA, USA, 2006.

[10] R. M. Everson and J. E. Fieldsend.
Multi-class ROC analysis from a multi-objective optimisation perspective.

Pattern Recognition Letters, 27(8):918–927, 2006.

[11] J. E. Fieldsend and R. M. Everson.
Visualising high-dimensional Pareto relationships in two-dimensional scatterplots.

EMO 2013, pages 558-572, 2013.

QI

References V

[12] A. R. R. de Freitas, P. J. Fleming, and F. G. Guimaraes.
Aggregation trees for visualization and dimension reduction in many-objective optimization.

Information Sciences, 298:288-314, 2015.

[13] S. Greco, K. Klamroth, J. D. Knowles, and G. Rudolph.

Understanding complexity in multiobjective optimization
(Dagstuhl seminar 15031).

Dagstuhl Reports, pages 96-163, 2015.

[14] V. D. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall.

Inferential performance assessment of stochastic optimisers and the attainment function.

EMO 2001, pages 213-225, 2001.

References VI

[15] Z. He and G. G. Yen.

Visualization and performance metric in many-objective optimization.

IEEE Transactions on Evolutionary Computation, 20(3):386–402, 2016.

[16] P. E. Hoffman, G. G. Grinstein, K. Marx, I. Grosse, and E. Stanley. **DNA visual and analytic data mining.**

Conference on Visualization, pages 437–441, 1997.

[17] A. Inselberg.

Parallel Coordinates: Visual Multidimensional Geometry and its Applications.

Springer, New York, NY, USA, 2009.

88

References VII

[18] T. Kohonen.

Self-Organizing Maps.

Springer Series in Information Sciences, 2001.

[19] R. H. Koochaksaraei, R. Enayatifar, and F. G. Guimaraes.

A new visualization tool in many-objective optimization problems.

HAIS 2016, pages 213-224, 2016.

[20] M. Köppen and K. Yoshida.

Visualization of Pareto-sets in evolutionary multi-objective optimization.

HIS 2007, pages 156-161, 2007.

References VIII

[21] F. Kudo and T. Yoshikawa.

Knowledge extraction in multi-objective optimization problem based on visualization of Pareto solutions.

CEC 2012, 6 pages, 2012.

[22] M. López-Ibáñez, L. Paquete, and T. Stützle.

Exploratory analysis of stochastic local search algorithms in biobjective optimization.

Experimental Methods for the Analysis of Optimization Algorithms, pages 209–222, 2010.

[23] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev.

Interactive Decision Maps: Approximation and Visualization of Pareto Frontier.

Kluwer Academic Publishers, Boston, MA, USA, 2004.

References IX

[24] D. Lowe and M. E. Tipping.

Feed-forward neural networks and topographic mappings for exploratory data analysis.

Neural Computing & Applications, 4(2):83-95, 1996.

[25] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K. H. Hinrichs. Voreen: A rapid-prototyping environment for ray-casting-based volume visualizations.

IEEE Computer Graphics and Applications, 29(6):6–13, 2009.

[26] K. Miettinen.

Survey of methods to visualize alternatives in multiple criteria decision making problems.

OR Spectrum, 36(1):3-37, 2014.

References X

[27] S. Obayashi and D. Sasaki.

Visualization and data mining of Pareto solutions using self-organizing map.

EMO 2003, pages 796-809, 2003.

[28] R. L. Pinheiro, D. Landa-Silva, and J. Atkin.

Analysis of objectives relationships in multiobjective problems using trade-off region maps.

GECCO 2015, pages 735–742, 2015.

[29] A. Pryke, S. Mostaghim, and A. Nazemi.

Heatmap visualisation of population based multi objective algorithms.

EMO 2007, pages 361-375, 2007.

92

References XI

[30] J. W. Sammon.

A nonlinear mapping for data structure analysis.

IEEE Transactions on Computers, C-18(5):401–409, 1969.

[31] J. B. Tenenbaum, V. de Silva, and J. C. Langford.

A global geometric framework for nonlinear dimensionality reduction.

Science, 290(5500):2319-2323, 2000.

[32] K. Trawinski, M. Chica, D. P. Pancho, S. Damas, and O. Cordon. moGrams: A network-based methodology for visualizing the set of non-dominated solutions in multiobjective optimization.

CoRR abs/1511.08178, 2015.

References XII

[33] J. Valdes and A. Barton.
Visualizing high dimensional objective spaces for multiobjective optimization: A virtual reality approach.

CEC 2007, pages 4199--4206), 2007.

[34] Voreen, Volume rendering engine.

http://www.voreen.org/

[35] D. J. Walker, R. M. Everson, and J. E. Fieldsend.

Visualisation and ordering of many-objective populations.

CEC 2010, 8 pages, 2010.

[36] D. J. Walker, R. M. Everson, and J. E. Fieldsend.

Visualizing mutually nondominating solution sets in many-objective optimization.

IEEE Transactions on Evolutionary Computation, 17(2):165–184, 2013.

