
Parallel and distributed
evolutionary algorithms

Prof. El-Ghazali TALBI
University Lille 1
El-ghazali.talbi@univ-lille1.fr
www.lifl.fr/~talbi

mailto:El-ghazali.talbi@univ-lille1.fr
mailto:El-ghazali.talbi@univ-lille1.fr

Motivations
� High-dimensional and complex optimization

problems in science and industry
o networks, genomics, transportation, engineering
design, power systems, …

� Metaheuristics (ex. EAs) reduce the
computational complexity of search BUT Parallel
issue remains important:
� More and more complex metaheuristics
� Huge search space
� CPU or memory intensive of the objective function

Motivations

� Rapid development of
technology
� Processors: Multi-core

processors, GPU, …
� Networks (LAN & WAN):

Myrinet, Infiniband, Optical
networks, …

� Data storage

� Increasing ratio
performance / cost

Goals

� Speedup the searchÆ real-time and interactive
optimization methods, dynamic optimisation, …

� Improve quality of solutionsÆ cooperation, better even
on a single processor

� Improve robustness (different instances, design space)

� Solving large problems Æ instances, accuracy of
mathematics models

Taxonomy of metaheuristics

Metaheuristics

Single
solution Population

Hill
Climbing

Simulated
annealing

Tabu
search

Evol.
algorithms

Swarm
optimisation

� Solution-based metaheuristics: HillClimbing,
Simulated Annealing, Tabu Search, VNS, …

� Population-based metaheuristics: Evolutionary
Algorithms, Scatter Search, Swarm optimization, …

Outline

� Parallel Metaheuristics: Design issues
� Parallel Metaheuristics: Implementation

issues
� Hardware platforms, Programming models
� Performance evaluation

� Adaptation to Multi-objective Optimization
� Software frameworks
� IIlustration : Network design problem

Parallel Models for Metaheuristics

� A unified view for single-based metaheuristics and
population based metaheuristics

� Three major hierarchical models:

� Algorithm-Level: Independent/Cooperative self-contained
metaheuristics

� Iteration-Level: parallelization of a single step of the metaheuristic
(based on distribution of the handled solutions)

� Solution-Level: parallelization of the processing of a single solution

Parallel Models for Metaheuristics

H u P u SScalability

Solution-level:
Processing of a single solution
(Objective / Data partitioning)

Algorithm-level:
Independent walks,
Multi-start model,

Hybridization/Cooperation
of metaheuristics

Iteration-level:
Parallel evaluation of

the neighborhood/population

Search algorithms Population / Neighborhood sub-solutions

Algorithm-level Parallel Model
� Problem Independent
� Alter the behavior of the

metaheuristic
� Design questions:

� When ? Migration decision:
� Blind: Periodic or Probabilistic
� Adaptive: state dependent

� Where ? Exchange topology:
complete graph, ring, torus, random,
…

� Which ? Information : elite solutions,
search memory, …

� How ? Integration

Meta.

Meta

MetaMeta.

Cooperation

Simulated Annealing
Genetic Programming
Evolution Strategy
Tabu search
Ant Colonies
Scatter search, …

Ex : Evolutionary Algorithms (Island
Model

� Improvement of robustness
and quality

� Distribution of the population in a set
of islands in which semi-isolated EAs
are executed

GA GA

� Sparse individual exchanges are
performed among these islands with
the goal of introducing more
diversity into the target populationsGA

GAGA

GA

GA GA

Ex : The multi-start model in Local Search

� Independent set of Local
Searches

� Improve robustness and
quality of solutions

� May start from the same or
different initial solution,
population

� Different parameters
� encoding, operators,

memory sizes (tabu list, …),
etc.

Flat classification

Homogeneous Heterogenenous

Global

GeneralSpecialist

Partial

Algorithm-Level Parallel Model

Homogeneous / Heterogeneous
� Homogeneous hybrids = Same Metaheuristic
� Heterogeneous = Different Metaheuristics

� Example

Simulated
Annealing

Evolutionary
Algorithm

Communication
medium

Tabu Search

Several different metaheuristics cooperate and
co-evolve some solutions

Global / Partial
� Partial : Problem is decomposed in sub-problems.

Each algorithm is dedicated to solve one sub-
problem

� Combinatorial / Continuous : Decomposition of
the problem, decision space, …

� Problem dependant: Vehicle routing, Scheduling, …

Synchronization : Build a global viable solution

Meta EAs, Tabu search
Simulated annealing

Problem

Sub-problem Sub-problem Sub-problem

Meta Meta

Specialist / General
� Specialist: Algorithms solve different problems

(ex: Co-evolutionary)
DiversifyingAgent IntensifyingAgent

Local Search Agent

Explored regions Promising regions
Adaptative Memory

Good
solution
s

explored
space

Promising
solutions

Initial solutions

R
ef

er
st

o

R
ef

er
st

oSolutions
from

unexplored regions

Iteration-level Parallel Model
� Problem independent
� Complex objective functions (non

linear, simulations, …)
� Do not alter the behavior of

the metaheuristic Æ Speedup
the search

� Design questions:
� Single-solution based algorithms:
decomposition of the neighborhood

� Population based algorithms:
decomposition of the population

Meta

Solution(s)

Full
fitness

Ex : Single-Solution Based Metaheuristic

� Evaluation of the
neighborhood: computationally
intensive step

� Decomposition of the
neighborhood :
� Asynchronous for Simulated

Annealing (# behavior)
� Synchronous for deterministic

algorithms (e.g. Tabu Search)

LS

Solution

Partition
of the

neighborhood

Ex : Population Based Metaheuristic

� Decomposition of the
population:
� Individuals (EAs), Ants (AS),

Particles (PSO), etc.
� Sharing Information:

Pheromone matrix, etc.
� Asynchronous for steady state

GAs (# behavior)
� Synchronous for

generational GAs

Selection
Replacement

E.A.

Couple of
individuals

Evaluated
offsprings

Crossover,
Mutation,
evaluation

Solution-level Parallel Model

� Problem dependent
� Do alter the behavior of the

metaheuristic Æ Speedup the
search (CPU or I/O intensive)

� Synchronous
� Design questions:
� Data / Task Decomposition

� Data : database, geographical area,
structure, …

� Task : sub-functions, solvers, …

Solution
Partial
fitness

Aggregation of
partial fitnesses

Outline
� Parallel Metaheuristics: Design issues

� Parallel Metaheuristics: Implementation
issues
� Hardware platforms, Programming models
� Performance evaluation

� Adaptation to Multi-objective Optimization

� Software frameworks

� IIlustration : Network design problem

Parallel Metaheuristics: Implementation issues

P P P P P � P

Parallel Programming
Environments

ParallelArchitecture Hardware

Execution Support

ProcessProcessor ThreadP

Design of
Parallel

Metaheuristics

Programming Paradigms

Main criteria : Memory sharing, Homogeneity,
Dedicated, Scalability, Volatility

Shared Memory Machine (SMP)

� Easy to program: conventional OS
and programming paradigms

� Poor Scalability: Increase in
processors leads memory
contention

� Ex. : Multi-core (Intel, AMD), Origin
(Silicon Graphics),

CPU CPU CPU

Memory

network

interconnection network:
bus, crossbar, multistage

crossbar

Distributed Memory Architectures

� Good Scalability : Several hundred
nodes with a high speed
interconnection network/switch

� Harder to program

� Communication cost

� Ex. : Clusters

Memory CPU

CPU Memory

network

Memory CPU

Interconnection schema :
hypercube, (2D or 3D) torus,
fat-tree, multistage crossbars

Clusters & NOWs (DSM)
� Clusters: A

collections of PCs
interconnected through
high speed network,
� Low cost
� Standard components

� NOWs: Network Of
Workstations
� take advantage of

unused computing
power

ccNUMA architectures

� Mixing SMP and DSM
� Small number of processors (up to 16)

clustered in SMP nodes (fast connectio
crossbar for instance)

� SMPs are connected through a less
costly network with poorer
performance

n,

CPUCPUCPU

Memory
network

CPU

CPUCPUCPU

Memory
network

CPU

CPUCPUCPU

Memory
network

CPU

Interconnection network Periph.

� Billions of idle PCs …
� Stealing unused CPU

cycles of processors (a
mean of 47%)

High-Throughput
Computing GRID

• Offer a virtual supercomputer

� Inexpensive, potentially very powerful but more difficult
to program than traditional parallel computers

Grid Computing
“Coordinated resource sharing and problem solving in

dynamic, multi-institutional virtual organizations”

High-Performance
Computing GRID

GRID Platforms
Lille

Orsay NancyRennes

Bordeaux

Toulouse

Lyon

Grenoble

Sophia

HPC Grid: GRID’5000: 9 sites
distributed in France and

inter-connected by Renater
7800 proc: between 500 and

1500 CPUs on each site

HTC Grid: PlanetLab: 711
nodes on 338 sites over 25

countries

Main criteria for an efficient implementation

Criteria

Architecture

Shared
Memory /
Distributed

Homogenous
/
Heterogenous

Dedicated
/
Non Dedi.

Local
network /
Large
network

Volatility
& Fault
Tolerance

SMP SM Hom Dedi Local No

COW DM Hom Dedi Local No

NOW DM

HP Grid DM

HT Grid DM

Het Non Local Yes

Het Dedi Large No

Het Non Large Yes

Parallel Programming Environments
� Shared-memory:

� Distributed-memory:

� Hybrid model

System Category Language binding
PThreads Operating system C
Java threads Programming language Java

OpenMP Compiler directives Fortran, C, C++

Message
passing

RPC or Object-
based systems

Grid
computing

Sockets Java RMI Globus

MPI Condor

Algorithm-Level Parallel Model

� Granularity = Ratio Execution cost between
communication / Size Information exchanged
� Large Granularity Æ Well suited to large scale

architectures
� Frequency of migration, Size of information
exchanged

� Asynchronous exchange more efficient than
Synchronous exchange for Heterogeneous or
Non-dedicated Architectures

� Fault tolerance for Volatile architectures Æ
Checkpointing (reduced cost)

� Scale : Number of optimization algorithms

Iteration-Level Parallel Model

� Granularity = Evaluation of a partition / Partition
communication cost Æ
� Adapt granularity to target architecture (size of

partitions)
� Asynchronous evaluation is more efficient:
� Heterogeneous or Non Dedicated or Volatile

platforms
� Heterogeneous computation of the objective function

(#solutions #costs)
� Scale: Limited by
� Size of population
� Size of Neighborhood.

Solution-Level Parallel Model

� Granularity = Evaluation of sub-function /
Cost of solution communicationÆ Not
well suited to Large scale and distributed
memory architectures

� Limited scalability (number of sub-
functions or data partitions)

� Synchronous

Fault-tolerance issues

� Important in volatile, non-dedicated, large-scale
platforms

� Checkpointing – Recovery mechanism
� Application-oriented and NOT System-oriented

(reduced complexity in time and space)
� Algorithmic-level: Current solution or population,

iteration number, …
� Iteration-level: Which partition of population or

neighborhood + fitnesses
� Solution-level: Solution + partial fitnesses

Load Balancing, Security, …

� Static load balancing important for
heterogeneous architectures

� Dynamic load balancing important for non
dedicated, volatile architectures.

� Security issues important for large-scale
architectures (multi-domain administration,
firewalls, …) and some applications
(medical and bio research, industrial, …)

Performance evaluation
� Speedup ?

SN = T1 / TN
Ti : Execution time using i processors (wall clock time)
N : number of used processors

� If S < N Î Sublinear speedup
� If S = N Î Linear speedup
� If S > N Î Superlinear speedup

� Absolute speedup
� Strong: T1 = Best known sequential algorithm ??
� Weak :

� Population of N individuals compared to K
islands of N/K individuals

� Single-solution metaheuristic with N iterations
with K S-Meta with N/K iterations

Performance evaluation
� Relative speedup

� Fixed number of iterations
� Interesting for evaluating the efficiency of the implementation
� Superlinear speedup is possible: architecture source (memory,

cache, …)
� Convergence to a solution with a given quality

� Interesting for evaluation the efficiency of the parallel design
(Algorithm-level parallel model)

� Superlinear speedup possible: search source (such as in branch and
bound)

� Heterogenous or Non Dedicated architectures:
� Efficiency: EN = SN * 100% / N (fraction of time processors are

conducting work)
� 100% efficiency means linear speedup
� t(j): time for task i, U(i): availability of worker i

� Stochastic : Mean, … ¦i� IU (i)
¦ j�JE

t (j)

Outline

� Parallel Metaheuristics: Design issues
� Parallel Metaheuristics: Implementation

issues
� Hardware platforms, Programming models

� Adaptation to Multi-objective
Optimization

� Software frameworks
� IIlustration : Network design problem

Multi-Objective Optimization

(MOP)
min f (x) (f (x))
s.c. x� S

(x), f (x),..., f
1 2 n

nt2

� Dominance
� y dominates z if and only if

�i�[1, …, n], yi d zi

and �i�[1, …, n], yi < zi

� Pareto solution
� A solution x is Pareto if a solution

which dominates x does not exist

Î Goal: Find a good quality and well
diversified set of Pareto solutions f 1

f 2

Feasible solutions

Pareto front
Solution found

Algorithm-Level Parallel Model

� General and Global Cooperative Models:
� Which Information to exchange ?

� Pareto archive or current populations (random, elite, uniform,
…), …

� Any replacement strategy for the current population
� Based on: Dominance, Indicator, Scalarization, …

� Partial:
� Decompose the Pareto front (objective space)
� # dominance criteria

� Specialist :
� Solve # problems (# objectives subsets)

Iteration-Level Parallel Model

� Many MOP applications with complex
objectives (CFD – computational fluid dynamics,
CEM – computational electromagnetics, FEM - finite
element method, …)

� Fitness assignment
� Dominance, performance indicator, … :

complex procedures to parallelize
� Elitism
� Pareto archiving : complex procedure to

parallelize

Solution-Level Parallel Model

� Decomposition of the n objectives
� Multi-disciplinary Design Optimization
� Many engineering domains with different

models (# disciplines, #solvers)
� Ex: Car design
� Optimize the air flow around a car Æ

computational fluid dynamics (CFD) solver
� Optimize the toughness of materials Æ finite

element method (FEM) solver

Outline
� Parallel Metaheuristics: Design issues

� Parallel Metaheuristics: Implementation
• issues

� Hardware platforms, Programming models

� Adaptation to Multi-objective Optimization

� Software Frameworks for Parallel
Metaheuristics

� IIlustration : Network design problem

Why ?
� From scratch: high development cost, error prone,

difficult to maintain, …
� Code reuse: difficult to reuse, adaptation cost, …
� Design and code reuse – software components:

Hollywood principle « Don’t call us, we call you
»

Combinatorial Optimization Problems (COPs) in practice:
� Diversity
� Continual evolution of the modeling (regards

needs, objectives, constraints, …)
� Need to experiment many solving methods, techniques

of parallelization, hybridization, parameters, …

Design Objectives
� Maximal Reuse of code and design

� Separation between resolution methods and target problems
� Invariant part given
� Problem specific part specified but to implement

� Flexibility et Adaptability
� Adding and updating other optimization methods, search mechanisms,

operators, encoding, ...
� … to solve new problems

� Utility
� Large panel of methods, hybrids, parallel strategies, …

� Portability
� Deployment on different platforms (Standard library)

� Transparent access to performance and robustness
� Parallel implementation is tranparent to the target hardware platform

� Open source, Efficiency, Easy to use, …

Examples

Metaheuristics Parallelism
support at design

Parall. and dist.
at

implementation

ECJ E.A. Island cooperation Threads / Sockets

D. BEAGLE E.A. Centralized model /
Island cooperation.

Sockets

J-DEAL E.A. Centralized model Sockets

DREAM E.A. Island cooperation Sockets / P2P

MALLBA L.S. / E.A. All MPI, Netstream

PARADISEO S-Meta / P-Meta All MPI, Condor,
PThreads,

Globus,
CUDA

PARADISEO (PARAllel and
DIStributed Evolving Objects)

� PARADISEO in some words …
http://paradiseo.gforge.inria.fr

� An Open Source C++ framework (STL-Template)
� Paradigm-free, unifying metaheuristics
� Flexible regards the tackled problem
� Generic and reusable components (operators of

variation, selection, replacement, criterion of
termination, …)

� Many services (visualization, management of command
line parameters, check-pointing, …)

http://paradiseo.gforge.inria.fr/

PARADISEO :

EO

� Evolving Objects (EO) for the design of population-based
metaheuristics: GA, GP, ES, EDA, PSO, …

� Moving Objects (MO) for the design of solution-based
metaheuristics: LS, TS, SA, VNS, ILS

� Multi-Objective EO (MOEO) embedding features and techniques
related to multi-objective optimization,

� PEO for the parallelization and hybridization of metaheuristics

PEO

MO MOEO

http://paradiseo.gforge.inria.fr

http://paradiseo.gforge.inria.fr/

Architecture (level of execution)
Parallel and distributed platforms

EO

� Parallelism and distribution
� Communication libraries (MPI LAM)

o Deployment on networks/clusters of stations (COWs, NOWs)
� Multi-threading layer (Posix threads)

o multi-core, multi-processors with shared memory (SMPs)
� CUDA environments

o GPUs
� Transparent to the user

PEO

MO MOEO LAM-MPI PThreads CUDA

Architecture (level of execution)
Grid computing

Master/Worker

Condor (HTC) Globus (HPC)EO

PEO

MO MOEO

� Gridification
� Re-visit parallel models taken into account the characterisitics of Grids
� Coupling of ParadisEO with a Grid middleware (Condor-MW and Globus)

� Transparent volatility & checkpointing
� Ex : Definition in ParadisEO-CMW of the memory of each metaheuristic and

the associated parallel models

Illustration: Core classes of the Local
Search

UML notation
(Unified Modeling Language)

Illustration: Core classes of the
Evolutionary Algorithm

Illustration: The cooperative island model of
E.A.s

E.A.

E.A.
Migration

/* To enable migrations (i.e. exchanges
of individuals) */

eoPopChan <Route> pop_chan ;
/* Migrations will occur periodically */
eoFreqContinue <Route> mig_cont (FREQ_MIG) ;
/* Migrations are composed of random individuals
*/eoRandomSelect
/* Selector of
eoSelectNumber

<Route> mig_select_one ;
NUM_EMIG emigrants*/
<Route> mig_select
(mig_select_one, NUM_EMIG) ;

/* Emigrants replace the worst individuals*/
eoPlusReplacement <Route> mig_replace ;
/* The ring topology */
eoRingTopology topo (naming_chan) ;
/* Building a manager of migrations */
eoDistAsyncIslandMig <Route> island_mig

(naming_chan
, pop_chan,
mig_cont,
mig_select,
mig_replace,
pop,
pop,
topo)
;

Illustration: The parallelization of
the evaluation step

E.A.

Solution

Full
fitness

Illustration: The parallelization of the
objective function

Aggregation of
partial fitnesses

Solution

Partial
fitness

Outline

� Parallel Metaheuristics: Design issues
� Parallel Metaheuristics: Implementation issues

� Hardware platforms, Programming models
� Adaptation to Multi-objective Optimization
� Software frameworks
� IIlustration : Network design problem
� Combined use of the 3 parallel models
� Multi-objective problem
� Implemented on COWs, NOWs, HPC Grids and

HTC Grids
� Using of PARADISEO – EO & MO & MOEO & PEO

Design of radio networks in
mobile telecommunication

� Network design
� Positioning sites
� Fixing a set of parameters for each

antenna
� Multi-objective problem

� Cost of the network: Number of sites
� Quality of Service

� NP-hard problem with:
� Huge search space
� High cost (CPU and memory)

objective functions, constraints.

A brief description
Working area

Used sites
Useless sites

Handover area
Cover area

Parameters of
antennas

Propagation model
(Free spaceOkumura-Hata)

� A set of base stations that satisfy
the following constraints …
� Cover
� Handover

� … and optimizes the following
criterion
� Min. the number of sites
� Min. interferences
� Max. yield traffic

Données bornes
Ps [26, 55] dBm
Diagram 3 types
Hauteur [30, 50] m
Azimut [0, 359] °
Inclinaison [-15, 0] °
TRX [1, 7]

A multi-layer hierarchical parallel/hybrid
metaheuristic

2. Distribution
of networks

3. Parallel evaluation
(data partitioning)

1. Deployment of
incremental

Local Searches

1. Cooperative
island EAs

Iteration-level Parallel Model (Homogeneous
and Dedicated Cluster)

� Synchronous/Asynchronous
�Deploying irregular tasks
o The computation time is
dependent of the number of
activated sites of the network
�Limited scalability of the
synchronous model (size of the
pop., e.g. 100)

A.E.

Network

Full
fitness

Solution-level Parallel Model
� Synchronous, fine-grained !
� Larger instances
� Poor scalability

Solution
Partial
fitness

Agregation

Partitioning
of the geographical

data

(f1.1,f2.1, f3.1)(f1.2,f2.2, f3.2)
(f1.3,f2.3, f3.3)

Partitioned
data

Parallel evaluation of the
population (model 2)

Synchronous vs. Asynchronous

Parallel Evaluation of a solution
(model 3)

Influence of the granularity on the
efficiency (synchronous)

Superlinear speedup

models 2&3

model 2 alone

Experimentation under PARADISEO
(non-dedicated cluster of PCs)

High-Throughput Computing Grid:
Campus of Lille (3 # administrative domains)

Highway Urban

Platform HTC Grid (Polytech, IUT, LIFL)
Prog. Environment Condor

Number of proc. 100 (heterog. and non dedicated)

Cumulative wall clock time 30681 h.
Wall clock time Almost 15 days
Parallel efficiency 0.98

High-Performance Computing
Grid: GRID’5000 under
Globus

�400 CPUs on 6 sites: Lille,
Nice-Sophia Antipolis, Lyon,
Nancy, Rennes

GRID’5000: A fully reconfigurable grid! :
Linux « images » having Globus and MPICH-G2

already installed.

�Parallel efficiency = 0.92
� Best results obtained
�More than 22 years of
cumulative wall clock time
(other benchmark on 2465
processors)

Conclusions
� Unifying Parallel Models

for Metaheuristics

� Clear separation between
parallel design and
parallel implementation

� Encourage the use of
software framework for
[parallel] metaheuristics

[Parallel] Metaheuristics

Different Architectures:
Sequential, Cluster, NOW,

Grid, SMP, …

Software framework for
[Parallel] metaheuristics

Perspectives
� Parallel models combining Metaheuristics &

Exact methods (Algorithms, Coupling of
Software, …)

� Parallel models for dynamic and robust
optimization problems

� Parallel models for optimization problems with
uncertainty
� Need a multiple evaluation of a solution

� Solving challenging problems on Grids (Ex:
Molecular biology, Engineering design, …)

� Metaheuristics on heterogeneous
architectures (GPU+multi-cores)

