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Program for today

1. The Basics of Fitness Landscapes

e Introductory example
o Brief history and background

2. Geometries of Fitness Landscapes

o Ruggedness and multimodality
o Neutrality

3. Local Optima Network
o Features from the network, algorithm design and performance
e Performance prediction and algorithm portfolio

4. Multi-objective Fitness Landscapes
o Brief overview of (evolutionary) multi-objective optimization

o Features to characterize multi-objective fitness landscapes
e Performance prediction and algorithm selection




Introductory example

Please visit the “game” at:

http://www-lisic.univ-littoral.fr/~verel/RESEARCH/
fitness-landscape-game/index.html

or:
http://www-lisic.univ-littoral.fr/~verel
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1. The Basics of Fitness Landscapes

e Introductory example
o Brief history and background

N

. Geometries of Fitness Landscapes
3. Local Optima Network

o

. Multi-objective Fitness Landscapes
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Single-objective optimization

@ Search space : set of candidate solutions
X
@ Objective fonction : quality criteria (or non-quality)
f: X—=>R

X discrete : combinatorial optimization
X C IR" : numerical optimization

Solve an optimization problem (maximization)

X* = argmaxy f

or find an approximation of X™*.
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Context : black-box optimization

X — . — f(x)

No information on the objective function definition f

Objective fonction :

@ can be irregular, non continuous, non differentiable . . .

@ given by a computation or a simulation
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origin and definition positioning and goal
Real-world black-box optimization :

. an example
PhD of Mathieu Muniglia, Saclay Nuclear Research Centre (CEA), Paris

— f(x)

— AP

Multi-physic simulator
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Search algorithms

(implicite) enumeration of the search space

@ Many ways to enumerate the search space

e Exact methods : A*, Branch&Bound . ..
e Random sampling : Monte Carlo, approximation with

guarantee . ..
v
Local search
Neighborhood
. % % # Neighbor Imnallzalmn} ° .. Selection g °
Solution % % LN )
° O v
» TR
\\ 8] Replacement Random
AN /I *x’;’;‘ Variation
_________ o~ XX
Accept? x X%
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Metaheuristics

Local search methods using a neighborhood relation

Neighborhood
% % % Neighbor Initialization . Selectlon
Solution % % > e
0 ® '
k\\ 8 ‘| 8
Ay
., ! Replacement andom
\~~_ ,/’ epiacem xxi; Variation
1~ - X X
Accept?

x
x X%
@ Single solution-based metaheuristics : Hill climber,

Simulated annealing, Tabu search, lterated local search

o Population-based metaheuristics : Genetic algorithm,
Genetic programming, Ant colony optimization

6/28



optimization
00000®00

Stochastic algorithms with a single solution (Local Search)

@ Xset of candidate solutions (the search space)
@ f: X — IR objective function

@ N(x) set of neighboring solutions from x

Neighborhood

/ % Neighbor
; X %

Solution % %8

\ @
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Main idea behind local search algorithms

Why using a local search strategy based on a neighborhood ? )
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Main idea behind local search algorithms

Why using a local search strategy based on a neighborhood ? J

Arrival

Split the global problem
into a sequence of (smaller/easier) local problems

o Benefit : reduce the complexity
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Main idea behind local search algorithms

Why using a local search strategy based on a neighborhood ? J

global
xoptimum

Arrival

Split the global problem
into a sequence of (smaller/easier) local problems

o Benefit : reduce the complexity

@ Risk : no guarantee to find the optimal solution
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Motivations on fitness landscape analysis

For the search to be efficient, the sequence of local optimization
problems must be related to the global problem

<

Main motivation : “Why using local search”

@ Study the search space from the point of view of local search
= Fitness Landscape Analysis

@ To understand and design effective local search algorithms

"the more we know of the statistical properties of a class of fitness
landscapes, the better equipped we will be
for the design of effective search algorithms for such landscapes”

L. Barnett, U. Sussex, PhD 2003.
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Fitness landscape : original plots from S. Wright [Wri32]

A.Increased Mutation B Increosed Selection € Quelitative Change
or reduced Selection or reduced Mutalion of Enviroament
4NU, §NS very large  ANU, 4NS very larqe 4NU,4NS very large

# -

Frave 2-Dingrarsmmatic representation of the Skl of geae cierhirativen s twa dives 0. Close Inbreeding E Slight Inbreeding F. Division into local Races
o e 1 e Bt o o T o o S N e St & AN e iou: b focd!
Frouse 4—Field of gene inati occupied by a Jation within the general field

of possible combinations. Type of history under specified conditions indicated by relation
to initial field (heavy broken contour) and arrow,

source : Encyclopaedia Britannica Online
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Fitness landscapes in (evolutionary) biology

A
VI

L7

@ Metaphorical uphill struggle across a “fitness landscape”

e mountain peaks represent high “fitness” (ability to survive)
o valleys represent low fitness

@ Evolution proceeds :
population of organisms
performs an “adaptive walk”
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Fitness landscapes in (evolutionary) biology

AN
Ain

”""“%

LTS Z

@ Metaphorical uphill struggle across a “fitness landscape”

e mountain peaks represent high “fitness” (ability to survive)
o valleys represent low fitness

@ Evolution proceeds :
population of organisms

performs an “adaptive walk”

be careful : "2 dimensions instead of many thousands”
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Fitness landscapes in biology and others sciences

In biology :

@ model of species evolution

Extended to model dynamical systems :

@ statistical physic
@ molecular evolution
A @ ecolo
o &y
J"""\‘ \ ‘
”.',3‘35:(32/:’:'.'.0‘}\\ A’h&\\ ° |
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Fitness landscapes in biology

2 sides of Fitness Landscapes

@ Metaphor : most profound concept in evolutionary dynamics

e give pictures of evolutionary process
o be careful of misleading pictures :
“smooth low-dimensional landscape without noise”

e Quantitative concept : predict the evolutionary paths

X — X

e Quasispecies equation : mean field analysis
Xt

e Stochastic process : Markov chain
Pr(xes1 | xt)

e Individual scale : network analysis
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Definition of fitness landscape for optimization [Sta02]

Fitness landscape (X, NV, ) :

Fitness
@ search space :
X
@ neighborhood relation :
N X = 2X
@ objective function :
f:X—>R

Search space =
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What is a neighborhood ?

Neighborhood function :

N X = 2X

Fitness

Set of “neighbor” solutions
associated to each solution

1/’1
/

DR
A
tllh";;,;&&{is\\
lll'/,lll'“\\\\t@
RS

N(x) ={y € X | Pr(y = op(x)) > 0}

Search space
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What is a neighborhood ?

Neighborhood function :
N X 2%

Fitness

Set of “neighbor” solutions
associated to each solution

N(x) ={y € X | Pr(y = op(x)) > 0}
N(x)={y € X | Pr(y = op(x)) > ¢}
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What is a neighborhood ?

Neighborhood function :
N X 2%

Fitness

Set of “neighbor” solutions
associated to each solution

N(x) ={y € X | Pr(y = op(x)) > 0}
N(x) ={y € X | Pr(y = op(x)) > €}
N(x) = {y € X | distance(x, y) = 1}

Search space
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What is a neighborhood ?

Fitness

Neighborhood function :
N X —2X

Set of “neighbor” solutions
associated to each solution

Search space

_ N(x) = {y € X | Pr(y = op(x)) > 0}

Neighborhood must be or

based on the operator(s) N(x)={y € X | Pr(y = op(x)) > ¢}
used by the algorithm or

N(x) = {y € X | distance(x,y) =1
Neighborhood < Operator () =1y | (x,y) }
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sitioning and goal

Typical example : bit strings

Search space : X = {0,1}V
N(X) = {y € X | dHamming(Xay) = 1}

Example :
N(01101) = {11101,00101,01001,01111,01100}
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Typical example : permutations

Traveling Salesman Problem :
find the shortest tour which cross one time every town

Search space : X = {o | 0 permutations }
N(x) = {y € X | Pr(y = opaopt(x)) > 0}
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Not so typical example : continuous optimization

Still an open question...

><\V
N

Search space : X = [0,1]¢
Na(x)={y e X | |ly — x| < a} with a >0
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More than 1 operator...?

What can we do with 2 operators (ex : memetic algorithm) ?
M) ={yeX|y=op(x)} No(x)={yeX|y=opo(x)}
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More than 1 operator...?

What can we do with 2 operators (ex : memetic algorithm) ?
M) ={yeX|y=op(x)} No(x)={yeX|y=opo(x)}

Severals possibilities according to the goal :

e Study 2 landscapes : (X, N1, f) and (X, Ny, f)
@ Study the landscape of “union” : (X, N/, f)

N=NMUN ={y € X |y=opi(x) or y = opa(x)}
@ Study the landscape of “composition” : (X, N, f)

N ={y€X|y=opoop (x)with op,op € {id,op1,0p>}}
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Rice's framework for algorithm selection [Ric76]

Algorithm selection

XEFP

PERROBKEMCE
SPACE
|

¥
FEATURE
EXTRACTIOR

f@eF = # e

FEATURE
SPACE

Rice, J. R. (1976). The algorithm selection problem. Advances in computers, 15, 65-118.
”

A€

ALGORITHK
SPACE

ved
B(A,x) PERFORMANCE
E P ¥

MAPPTNG SPAC

|lp|| = ALGORITHM PERFORMANCE

positioning and goal
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Positioning of fitness landscape analysis

election of local search algorithm

£ Featura extraction

PROBLEM ™ Feature
SPACE SPACE
Aoty
selectan
based en
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- ! -
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to problem 0
parformance Performance
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SPACE

Figure 1.1: A framework for describing the general problems of algorithm selection and

performance prediction based on problem features (based Rice's model [132]).

Malan, K. M., Engelbrecht, A. P. (2014). Fitness landscape analysis for metaheuristic performance prediction.

In Recent advances in the theory and application of fitness landscapes (pp. 103-132). [M E14]
v
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Positioning of fitness landscape analysis

Selection of local search algorithm

peb oG
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Figure 1.1: A framework for describing the general problems of algorithm selection and

performance prediction based on problem features (based Rice's model [132]).

Malan, K. M., Engelbrecht, A. P. (2014). Fitness landscape analysis for metaheuristic performance prediction.

In Recent advances in the theory and application of fitness landscapes (pp. 103-132). [M E14]
v

Fitness landscape analysis : features extraction vs. performance )
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Fitness landscape analysis

Algebraic approach,
grey-box :

Af = \(f = F)

Goals

positioning and goal

00e000

Statistical approach, black-box :

Problems ~~ Features

~> Algorithm ~» Performances

Fitness landscape analysis

/\

Understanding of the
the search space structure

Additional Selection: Design of
knowledge - representation, algorithm
- objective fonction,
- neighborhood, algorithm, etc.
[MWS91] [TPCO8] [Fon99]
[MwW92] [LI08] [AZS02]
[Col+06] [MFO00] [MF00]
[AR14] [Ma+12]

[Ma+11]

Prediction
of performance

Adaptive selection

Parameters
i of algorithm

Offline selection
i tunning

of algorithm

[Xu+08]
[Gre95]
[LLY11]
[Me+11]

/\

Offline extraction
of features

Online extraction
of local features

Parameters
control

[SP94]
[Fia+10]
[BP14]
[GLS16]
[Jan+16]
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Typical use cases of fitness landscapes analysis

@ Comparing the difficulty of two landscapes :

o one problem, different encodings : (X1, N1, f1) vs. (X2, N2, f2)
different representations, variation operators, objectives . ..

Which landscape is easier to solve ?
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Typical use cases of fitness landscapes analysis

@ Comparing the difficulty of two landscapes :

o one problem, different encodings : (X1, N1, f1) vs. (X2, N2, f2)
different representations, variation operators, objectives . ..

Which landscape is easier to solve ?

@ Choosing one algorithm :
e analyzing the global geometry of the landscape
Which algorithm shall | use?
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Typical use cases of fitness landscapes analysis

@ Comparing the difficulty of two landscapes :
o one problem, different encodings : (X1, N1, f1) vs. (X2, N2, f2)
different representations, variation operators, objectives . ..
Which landscape is easier to solve ?

@ Choosing one algorithm :
e analyzing the global geometry of the landscape
Which algorithm shall | use?
© Tuning the algorithm’s parameters :
e off-line analysis of the fitness landscape structure

What is the best mutation operator ? the size of the
population ? the number of restarts? ...
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Typical use cases of fitness landscapes analysis

@ Comparing the difficulty of two landscapes :
o one problem, different encodings : (X1, N1, f1) vs. (X2, N2, f2)
different representations, variation operators, objectives . ..
Which landscape is easier to solve ?

@ Choosing one algorithm :

e analyzing the global geometry of the landscape

Which algorithm shall | use?

© Tuning the algorithm’s parameters :

e off-line analysis of the fitness landscape structure

What is the best mutation operator ? the size of the
population ? the number of restarts? ...

@ Controlling the algorithm’s parameters at runtime :

e on-line analysis of structure of fitness landscape

What is the optimal mutation operator according to the
current estimation of the structure?
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Back to the definition

Fitness landscape (X, N\, f) is :
an oriented graph (X, ') with weighted nodes given by f—values}

@ Model of the search space

@ Not specific to a particular
local search

24/28
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Back to the definition

Fitness landscape (X, N\, f) is :
an oriented graph (X, ') with weighted nodes given by f—values}

@ Model of the search space

@ Not specific to a particular
local search

@ A specific local search puts
probability transitions on
edges, according to f-values
and the search history

v

24/28
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Fitness landscape and complex systems

Complex system : local vs. global properties

@ Sample the neighborhood to have information
on local features of the search space

@ From this local information, deduce global feature such as
general shape, difficulty, performance, best algorithm . ..

= Analysis using complex systems tools

25/28



Short summary for this part

Studying the structure of the fitness landscape
allows to understand the difficulty,
and to design good optimization algorithms

The fitness landscape is a graph (X, N, f) :

@ nodes are solutions and have a value (the fitness)

@ edges are defined by the neighborhood relation

pictured as a real landscape
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Short summary for this part

Studying the structure of the fitness landscape
allows to understand the difficulty,
and to design good optimization algorithms

The fitness landscape is a graph (X, N, f) :

@ nodes are solutions and have a value (the fitness)

@ edges are defined by the neighborhood relation

pictured as a real landscape

Next section : two main geometries

@ multimodality and ruggedness

@ neutrality
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1. The Basics of Fitness Landscapes
2. Geometries of Fitness Landscapes

e Ruggedness and multimodality
o Neutrality

3. Local Optima Network

4. Multi-objective Fitness Landscapes

neutral networks
000000000
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Multimodal fitness landscapes

Local optima s*

no neighboring solution with strictly better fitness value
(maximization)

Vs € N(s%), f(s) < f(s¥)

Fitness
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Typical example : bit strings

Search space : X = {0,1}V
N(X) = {y e X | dHamming(Xay) = 1}

Example :

x = 01101 and fi(x) = f(x) = fz(x) =5

11101 [ 00101 | 01001 | 01111 | 01100
Al 4 2 3 0 3
H| 2 3 6 2 3
f| 1 5 2 2 4

Is x is a local maximum for f1, f;, and/or 37 \
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Sampling local optima

Basic estimator (Alyahya, K., & Rowe, J. E. 2016 [AR16])

Expected proportion of local optima :

Proportion of local optima in a sample of random solutions

o Complexity : n x |NV]|
@ Pros :
unbiased estimator

@ Cons :
poor estimation when expected proportion is lower than 1/n
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Sampling local optima by adaptive walks

Adaptive walk
(X1,X2, ... ,Xg) such that Xi+1 € N(X,‘) and f(X;) < f(X,'_H)

5/45
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Sampling local optima by adaptive walks

Adaptive walk
(x1,%2,...,xp) such that x;11 € N(x;) and f(x;) < f(xj+1)

Hill-Climbing algorithm (first-improvement)

Choose initial solution x € X
repeat
choose x’ € {y € N(x) | f(y) > f(x)}
if f(x) < f(x’) then
x X'
end if
until x is a Local Optimum

5/45
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Sampling local optima by adaptive walks

Adaptive walk
(x1,%2,...,xp) such that x;11 € N(x;) and f(x;) < f(xj+1)

Hill-Climbing algorithm (first-improvement)

Choose initial solution x € X
repeat
choose x’ € {y € N(x) | f(y) > f(x)}
if f(x) < f(x’) then
x X'
end if
until x is a Local Optimum

Basin of attraction of x*

{x € X | HillClimbing(x) = x*}.
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Multimodality and problem difficulty

The core idea :

@ if the size of the basin of
attraction of the global
optimum is “small”,

Finess @ then, the “time” to find the
| global optimum is “long”

Optimization difficulty :
Number and size of the basins of
attraction (Garnier et al. [GK02])

Search space

Feature to estimate the basins size :

o Length of adaptive walks

complexity : sample size x £ x |N]|
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Multimodality and problem difficulty

Length of adaptive walk

Length of adaptive walk

ex.

200

180
160
140
120
100
80
60
40
20

64 128 256

260

240
220

180
160
140
120
100

nk-landscapes with n = 512

The core idea :

@ if the size of the basin of
attraction of the global
optimum is “small”,

o then, the “time” to find the
global optimum is “long”

Optimization difficulty :
Number and size of the basins of
attraction (Garnier et al. [GK02])

Feature to estimate the basins size :
o Length of adaptive walks

complexity : sample size x £ x |N]|
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Practice : the Squares Problem

a program design problem ?

Squares Problem (SP)

Find the position of 5 squares
in order to maximize inside
squares the number of brown
points without blue points

1000

250

1000

Candidate solutions

X = ([0,1000] x [0,1000])®

X1 X2
1 577 701
2 609 709
3 366 134
4 261 408
5 583 792

Fitness function

f(x) = number of brown points
— number of blue points
inside squares

A\
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Source code in R : ex01.R

Source code : http://www-1lisic.univ-littoral.fr/~verel/ J

Different functions are already defined :
@ main : example to execute the following functions

@ draw and draw_solution :
draw a problem and the squares of a solution

@ fitness_create:
create a fitness function from a data frame of points

@ pbl_create and pb2_create :
create two particular SP problems
@ init :
create a random solution with n squares

@ hcngh:
hill-climbing local search based on neighborhood

8/45
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Neighborhood

@ Execute line by line the main function

@ Define the neighborhood_create which creates
a neighborhood : a neighbor move one square

9/45
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Adaptive walks to compare problem difficulty

Pre-defined functions :

@ adaptive_length :
run the hill-climber and compute a data frame with the length of
adaptive walks

@ main_adaptive_length_analysis :
Compute the adaptive length of two different SP problems

@ Execute line by line the main adaptive length analysis
function to compute a sample of adaptive walk lengths

@ Compare the lengths of adaptive walks for the two SP
problems

@ Which one is more multimodal ?

10/45
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Random walk to measure ruggedness

0.65

Ay W‘fWWw’WW\M«J‘W

Random walk :

@ (x1,x2,...) where x;1+1 € N(x;) and equiprobability on NV (x;)
The idea :

o if the profile of fitness is irregular,

@ then the “information” between neighbors is low
Feature :

@ Study the fitness profile like a signal

11/45
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Rugged /smooth fitness landscapes

065 ‘ ‘ ‘ ‘ Autocorrelation function of the
06| ] time series of fitness-values along a
2 055 .rb rj M ‘ random walk [Wei90] :
£ l
i OSJWJ{A ‘ #\ h ‘ ’) “M W
] T o — L) = () = )
o4 0 200 400 600 800 1000 Var( f(Xi ))
Step
pr — Autocorrelation length 7 = ﬁ
z 2 “How many random steps such that
g; correlation becomes insignificant”
é @ small 7 : rugged landscape
= @ long 7 :
40 60 80 100
lag n complexity : sample size ~ 103
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Results on rugged fitness landscapes (Stadler 96 [Sta96])

Ruggedness decreases with the size of those problems

’ Problem ‘ parameter ‘ p(1)
symmetric TSP n number of towns 1-— %
anti-symmetric TSP n number of towns 1-— nfl
Graph Coloring Problem n number of nodes 1-— (aioi)n

« number of colors
NK landscapes N number of proteins 1-— %
K number of epistasis links
random max-k-SAT n number of variables 1-— n(1f2_k)
k variables per clause

13/45
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Fitness distance correlation (FDC) (Jones 95 [Jon95])

Correlation between fitness and distance to global optimum

0.7 0.8
0.65 0.75
06 e, 07
g o055 i 8
4 a1 | 2 o065
£ 05 T i
0.45 T, QG,W~“'“
0.4 0.55
0.35 0.5
0 5 10 15 20 25 0 5 10 15 20 25
Distance Distance
4 " “ ”n
easy hard

Classification based on experimental studies

@ p < —0.15 : easy optimization
@ p > 0.15 : hard optimization
@ —0.15 < p < 0.15 : undecided zone
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Fitness distance correlation (FDC) (Jones 95 [Jon95])

Correlation between fitness and distance to global optimum

0.7 0.8
0.65 0.75 k
06 .. ) f«Z 0.7 i
g osst il g
£ os 5;[%;“! g o
0.45 L HIH ERee 06 ..
04 0.55
0.35 0.5
0 5 10 15 20 25 0 5 10 15 20 25
Distance Distance
“easy” HhardH
@ Important concept to understand search difficulty
@ Not useful in “practice” (difficult to estimate)
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Practice : computing the autocorrelation function

Source code ex002.R :

@ mutation _create :
Create a mutation operator,
modify each square according to rate p,
a new random value from [(x — r,y — r),(x + r,y + r)].

@ main :
Code to obtain autocorrelation function

<

@ Define the function random walk to compute the fitness
values during a random walk

@ Execute line by line the main function to compute a sample of
fitness value collected during a random walk

@ Compare the first autocorrelation coefficient of the SP
problems 1 and 2
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Neutral fitness landscapes

Neutral theory (Kimura ~ 1960 [Kim83])

Theory of mutation and random drift

Many mutations have no effects on fitness-values

Fitness
@ plateaus

@ neutral degree

@ neutral networks
[Schuster 1994
[SFSH94], RNA
folding]
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Neutral fitness landscapes

e Redundant problem (symmetries . ..) [GS87]
@ Problem “not well” defined, or dynamic environment [IT04]

@ Unused variables, discrete values . ..

Real-world problems :

Fitness Robot controller

Circuit design

Genetic Programming

Learning problems

°
°

°

@ Protein folding
°

@ Scheduling problems
°

Graph problems...
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Neutrality and difficulty

@ In our knowledge, there is no definitive answer
about the relation between neutrality and problem hardness
o Certainly, it is dependent on the “nature” of neutrality

Solving optimization problem and neutrality

3 ways to deals with neutrality :
@ Decrease the neutrality : reduce the entropy barrier
@ Increase the neutrality : reduce the fitness barrier

@ Unchange the neutrality : use a specific algorithm

Sharp description of the geometry
of neutral fitness landscapes is required }
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Neutrality and difficulty

We know for certain that :

@ No information is better than Bad information :
From a non-optimal solution, hard trap functions are more
difficult than needle-in-a-haystack functions

@ Good information is better than No information :
Onemax problem is much easier than needle-in-a-haystack
functions
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Neutrality and difficulty

We know for certain that :

@ No information is better than Bad information :
From a non-optimal solution, hard trap functions are more
difficult than needle-in-a-haystack functions

@ Good information is better than No information :
Onemax problem is much easier than needle-in-a-haystack

functions J
@ When there is No information :
you should have a good method to create it ! J
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Objects of neutral fitness landscapes

Description of multimodal fitness landscapes is based on :
@ Local optima

@ Basins of attraction

Description of neutral fitness landscapes is based on :
o Neutral sets :
set of solutions with the same fitness

@ Neutral networks :
neutral sets with neighborhood relation
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Neutral sets : density of states
0.06
0.05
. 0.04
Fitness % 008
l" : 0.02
"ﬂ"-!l«v
%’u\ W Ll .
\" = 340 30 360 370 380 30 400

Fitness

Density of states (D.O.S.)

Search space
@ Introduced in physics
Set of solutions with same fitness (Rosé 1996 [REA96])
@ Optimization
(Belaidouni, Hao 00 [BHOO])

21/45



neutrality
000000®000000

Neutral sets : density of states

Informations given :

@ Performance of random

0 search
0% @ Tail of the distribution is an
004 indicator of difficulty :

o the faster the decay, the
harder the problem

0.03

Frequency

0.0:

S

@ But do not care about the
neighborhood relation

0

=

N ™
¥ om0 W0 a0 B W 40

Finess Features :

o Average, sd, kurtosis . ..

complexity : sample size
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Neutral sets : fitness cloud [verel et al. 2003]

e (X, F,Pr) : probability
space

@ op: X — X stochastic
operator of the local search

Fitness Cloud of op

Fitness f(op(s))

Conditional probability density
function of Y given X

Fitness f(s)
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Fitness cloud : a measure of evolvability

Fitness f(op(s))

Evolvability

Ability to evolve : fitness
in the neighborhood vs
Average  fitness of current solution

" Prob. increase

Stand. dev.
@ Probability of finding
better solutions

@ Average fitness of
better neighbors

@ Average and standard

Fitness f(s) dev. of fitness-values
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Fitness cloud : comparing difficulty

Average of evolvability

Fitness f(op(s))

Avg(op 1)

Avg(op 2)

Fitness f(s)

@ Operator 1?77 Operator 2
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Fitness cloud : comparing difficulty

Average of evolvability

Fitness f(op(s))

Avg(op 1)

Avg(op 2)

Fitness f(s)

neutrality
000000000e000

Operator 1 > Operator 2
Because Average 1 more
correlated with fitness
Linked to autocorrelation
Average is often a line :

e See works on Elementary
Landscapes (Stadler, D.
Wihtley, F. Chicano and
others)

o See the idea of Negative
Slope Coefficient (NSC)
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Fitness cloud : comparing difficulty

Probability to improve

@ Operator 177 Operator 2

pfop 1)

Prob. to Improve

pHop 2)

Fitness f(s)
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Fitness cloud : comparing difficulty
Probability to improve

Prob. to Improve

plop 1)

ptiop 2)

Fitness f(s)

@ Operator 1 > Operator 2

@ Prob. to improve of Op 1
is often higher than
Prob. to improve of Op 2

@ Probability to improve is
often a line

@ See also works on
fitness-probability cloud
(G. Lu, J. Li, X. Yao
[LLY11])

@ See theory of EA and fitness

level technics
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Fitness cloud : estimating the convergence point

Py

@ Approximation (only
approximation) of the
fitness value after few
steps of local operator

Average

A

@ Indication on the quality
of the operator

Fitness f(op(s))

@ See fitness level technic

fo fl f2f3

Fitness f(s)
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are we 7

Neutral sets (done) :
set of solutions with the same fitness-value
= No structure

Fitness cloud (done) :
Bivariate density (f(s), f(op(s)))
= Neighborhood relation between neutral sets

Neutral networks (now) :
= neutral sets with neighborhood relation : graph
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Fitness
Fitness

=8

Basic definition of Neutral Network

@ Node = solution with the same fitness-value

@ Edge = neighborhood relation
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Definitions

Test of neutrality
isNeutral : S x S — {true, false}

For example, isNeutral(x1,x2) is true if :
o f(x1) =f(x)
o |f(x1) — f(x2)| < 1/M with M is the search population size
@ |f(x1) — f(x2)| is under the evaluation error

Neutral neighborhood

of s is the set of neighbors which have the same fitness f(s)

Noeut(s) = {s' € N(s) | isNeutral(s,s')}

Neutral degree of s
Number of neutral neighbors : nDeg(s) = #(Nneut(s) — {s})
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Definitions

Wneut - (XO’X].v oo . 7Xm)
e for all i € [0, m — 1], xj+1 € N(x;)
o for all (i, /) € [0, m]?, isNeutral(x;,x;) is true

Neutral Network
graph G = (N, E)
@ N C X : for all s and s’ from N, there is a neutral walk

belonging to N from s to s’
@ (x1,x2) € E if they are neutral neighbors : xo € Npeut(x1)

A fitness landscape is neutral
if there exist many solutions with a high neutral degree
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Practice : computing the neutral rate

@ The neutral rate is the proportion of neutral neighbors
@ It can be estimated with a random walk :

H{Oxe xe+1) 0 f(xe) = f(xe1), t € {1,0 - 1}}
/-1

Source code ex003.R :

@ main :
Code to compute the neutral rates

v

@ Define the function neutral_rate to compute the neutral
rate estimated with a random walk

@ Execute the main function to compute the neutral rate

@ Compare the neutrality of the SP problems 1 and 2
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Features from the neutral network

Conventional graph metrics

@ Size of NN :

e number of nodes of NN

@ Neutral degree distribution :

e measure of the quantity of “neutrality”

© Autocorrelation of neutral degree (Bastolla 03 [BPRV03])
during a neutral random walk :

e comparaison with random graph
e measure of the correlation structure of NN
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Features from the neutral network

Q Size
avg, distribution . ..

/
A

© Neutral degree
distribution

>
/]

Frequency
0 3 5

55555555
Neutral Degree

\

© Autocorrelation of the
neutral degree
e random walk on NN
e autocorr. of degrees

v
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Features from the neutral network

Q Size
avg, distribution . ..

deg=2 @ Neutral degree
distribution

3

Frequency

55555555
Neutral Degree

© Autocorrelation of the
neutral degree

deg=3 e random walk on NN

e autocorr. of degrees

v
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Features from the neutral network

@ Rate of innovation
Fitness (Huynen 96 [Huy96]) 5
the number of new
accessible structures

.A .\./. (fitness) per mutation
@ Autocorrelation of
evolvability [VCCO06] :
autocorrelation of the
sequence
(evol(xp), evol(x1), .. .)
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Features from the neutral network

. 7 @ Rate of innovation
e o o (Huynen 96 [Huy96]) :
N IO S the number of new
accessible structures

(fitness) per mutation

@ Autocorrelation of
evolvability [VCCO06] :
autocorrelation of the
sequence
(evol(xp), evol(x1), .. .)
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Features between neutral networks

@ Autocorrelation of
evolvability
e Autocorrelation of
(evol(xo), evol(x1), . . .)
o Evolvability evol :

evol=0.1
wzo_o

@ average fitness in the

neighborhood
EV°':°°?\ @ probability to improve
@ What information ?

o if the correlation is high
= “easy”

svoi=0.2 (you can use this information)
o if the correlation is low

= “difficult”
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Summary for neutral fitness landscape features

Density of states
Size of neutral sets

Fitness cloud and related statistics
Evolvability of solutions

Neutral degrees distribution
“How neutral is the fitness landscape 7"

Autocorrelation of neutral degrees
Network “structure”

@ Autocorrelation of evolvability
Evolution of evolvability on NN
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Practice : Performance vs. fitness landscape features

Explain the performance of ILS with fitness landscape features? J

@ 20 random SP problems have been generated : pb_xx.csv

@ The performance of lterated Local Search has been computed
in perf_ils_xx.csv (30 runs)

@ Goal : regression of ILS performance with fitness landscape
features
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Practice : Performance vs. fitness landscape features

Source code exo004.R :

@ fitness_landscape_features :
Compute the basic fitness landscape features

@ random_walk_samplings :
Random walk sampling on each problem (save into file)

@ fitness_landscape_analysis :
Compute the features for each problems

@ ils_performance :
Add the performance of ILS into the data frame

@ main :
Execute the previous functions
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Practice : Performance vs. fitness landscape features

@ What are the features computed by the function
fitness_landscape_features?

o Execute the random walk samplings function to compute
the random walk samples

@ Compute the correlation plots between features and ILS
performance (use ggpairs)

@ Compute the linear regression of performance with fitness
landscape features
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QOutline

1. FheBasies-of Fitness-tandseapes

2. Geemetries-of FitnessLandseapes
3. Local Optima Network

o Features from the network, algorithm design and performance
e Performance prediction and algorithm portfolio

4. Multi-objective Fitness Landscapes
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)

@ Split the state space according to the different scales

@ Study the system at the large scale
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales

@ Study the system at the large scale

Variable aggregation for fitness landscape

@ At solutions level (small scale) :
o .
X P X ° Stochastlg local search opera}tor
e Exponential number of solutions
e Exponential size of the stochastic matrix
of the process (Markov chain)

@ Projection on a relevant space :
o Reduce the size of state space
e Potentially loose some information
o Relevant information remains when

p(op(x)) = op'(p(x))
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Key idea : complex system tools

Principle of variable aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales
@ Study the system at the large scale

Variable aggregation for fitness landscape

@ At solutions level (small scale) :

X _°° . x ° Stochastig local search opera}tor
e Exponential number of solutions
pl lp e Exponential size of the stochastic matrix

, of the process (Markov chain)
op .
E— E @ Projection on a relevant space :

o Reduce the size of state space
e Potentially loose some information
o Relevant information remains when

p(op(x)) = op'(p(x))
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Key idea : complex system tools

Complex network

Bring the tools from complex networks analysis to study the
structure of combinatorial fitness landscapes

Methodology

o Design a network that represents the landscape

e Vertices : local optima
e Edges : a notion of adjacency between local optima

o Extract features :

e ‘“complex” network analysis

@ Use the network features :

e search algorithm design, difficulty ...

J. P. K. Doye, The network topology of a potential energy landscape : a static
scale-free network., Phys. Rev. Lett., 88 :238701, 2002. [Doy02]
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Complex networks

Scale free network
(Watts and Strogatz, 1998
[WS98])

reforential Attachment

Small world network
(Barabasi and Albert, 1999

[BA99])

Small Worlds

uuuuu
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Energy surface and inherent networks

Inherent network

@ Nodes : energy minima

o Edges : two nodes are connected if the energy barrier
separating them is sufficiently low (transition state)

(a) Energy surface

(b) Contours plot :
partition of states space into
basins of attraction

(c) Landscape as a network

F. H Stillinger, T. A Weber. Packing structures and transitions in liquids and solids. Science, 225.4666 , p. 983-9,
1984. [SW84

J. P. K. Doye, The network topology of a potential energy landscape : a static scale-free network. Phys. Rev. Lett.,
88 :238701, 2002. [Doy02]
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Basins of attraction in combinatorial optimization
Example of a small NK landscape with N =6 and K =2

.0 .o .. .. o Bit strings of length N =6
e 2% = 64 solutions

® ® ° ° @ one point = one solution
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Basins of attraction in combinatorial optimization
Example of a small NK landscape with N =6 and K =2

o Bit strings of length N =6

@ Neighborhood size = 6

@ Line between points =
solutions are neighbors

@ Hamming distances between
solutions are preserved
(except for at the border of
the cube)

8/51



definitions
00®00000000

Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

The color represents the
fitness-values

@ high fitness

® |ow fitness
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Color represent fitness value
1 @ high fitness
® [ow fitness
— o —7 point towards the
BB solution with highest fitness
in the neighborhood

Why not making a Hill-Climbing
walk on it?
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

one basin of attraction

e ® ‘# @ Each color corresponds to
‘. ."-

@ Basins of attraction are
interlinked and overlapped

@ Basins have no “interior”
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Basins of attraction are interlinked and overlapped !
@ Most neighbors of a given solution are outside its basin
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Local optima network

O 0.185
X
0. 29

0.055
fit=0.7046

0.65

basins of attraction LON features understanding performance predicting performance
00000 000000@0000 0OO000 00000000

0000000 000000

@ Nodes :
local optima
o Edges :
transition probabilities
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Basin of attraction

Hill-Climbing algorithm (best-improvement)

Choose initial solution x € X

repeat
choose x" € N(x) such that f(x") = max,cp(x) f(¥)
if f(x) < f(x’) then

x + x'

end if

until x is a Local optimum

Basin of attraction of x* :

by = {x € X | HillClimbing(x) = x*}.

14/51



definitions
00000000e00

Local optima network

Definition : Local Optima Network (LON)
Oriented weighted graph (V, E, w)
@ Notes V : set of local optima {LO;,...,LO,}

@ Edges E : notion of connectivity between local optima
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Local optima network

Definition : Local Optima Network (LON)
Oriented weighted graph (V, E, w)
@ Notes V : set of local optima {LO;,...,LO,}

@ Edges E : notion of connectivity between local optima

v

2 possible definitions for edges

o Basin-transition edges :
transition between random solutions from basin b; to basin b;

([OTVDO8], [VOTO8], [TVO08], [VOT10])

o Escape edges :
transition from Local Optimum i to basin b;

(EA 2011, GECCO 2012, PPSN 2012, EA 2013 [DVOT13])

v
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Basin-transition edges : random transition between basins

ejj between LO; and LO; if 3 x; € bj and x; € bj : xj € N(x;)

Prob. from solution x to solution x’

p(x = x') = Pr(x’ = op(x))

Prob. from solution s to basin b;
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Basin-transition edges : random transition between basins

ejj between LO; and LO; if 3 x; € bj and x; € bj : xj € N(x;)

Prob. from solution x to solution x’

p(x = x') = Pr(x" = op(x))

For example, X = {0,1}" and bit-flip operator
if X' € N(x) , p(x = x') = &, otherwise p(x — x") =0

Prob. from solution s to basin b;

pix— b) = 3 p(x = X)

X’Ebj

Weights : Transition prob. from basin b; to basin b;

1
wj = p(bj = bj) = 5= > p(s = b))
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LON with escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
o Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Escape edges

Edge ej; between LO; and LO;
if 3x : distance(LO;,x) [CDland x € b;

Weights
wij = #{x € X | d(LO;,x) DI x € b;}

can be normalized by the number of solutions at
distance D

N
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LON with escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
o Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Escape edges

Edge ej; between LO; and LO;
if 3x : distance(LO;,x) [CDland x € b;

Weights
wij = #{x € X | d(LO;,x) DI x € b;}

can be normalized by the number of solutions at
distance D

N
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Basins of attraction features

e Basin of attraction :
o Size :
average, distribution ...
e Fitness of local optima :
average, distribution, correlation ...

predicting performance

000000
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NK-landscapes
[Kauffman 1993] [Kau93]

x €{0,1}" f(x) = %27:1 fi(Xj, Xiy - - -5 X3, )

Two parameters

@ Problem size n
@ Non-linearity k < n
(multi-modality, epistatic interactions)
o k=0 : linear problem, one single maxima
N
e k=n—1:random problem, number of local optima N2—+1

note : similar results for QAP and flowshop
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Global optimum basin size vs. non-linearity degree k

N=16 ——

N=18 e

@ Basin size of maximum
~ decreases exponentially
iy with non-linearity degree

0.001

0.0001

Normalized size of the global optima’s basin

e = Difficulty of
L A (best-improvement)
hill-climber from a random

1e-05

Size of the global maximum basin solution
as a function of
non-linearity degree k
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Distribution of basin sizes

1000

exp. ——
regr. line -

3
8

@ Log-normal cumulative distribution
(not uniform!) :
o large number of small basins
o small number of large basins

cumulative distribution
3

0.1

O 1 o Effect of non-linearity :
Cumulative distribution of the distribution becomes more
basins sizes for n = 18 and uniform with non-linearity degree k
k=24
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Fitness of local optima vs. basin size

i The highest, the largest ! |
8 1000 ’
H @ On average, the global
g @ . . . .
E optimum is easier to find
S than one given other local
, optimum
0.5 0.55 0.6 0.65 0.7 0.75 0.8 ) )
finess of local optima @ ... but more difficult to find,
Correlation fitness of local as the number of local
optima Vvs. their corresponding optima increases
basins sizes exponentially with k
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Basin : Interior and border sizes

Question :
oot Do basins look like a “mountain” with
interior and border ?

solution € interior
if all neighbors are in the same basin

Interior size ratio

v

average of basins interior
size ratio
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Basin : Interior and border sizes

Interior size ratio

average of basins interior
size ratio

Question :
Do basins look like a “mountain” with
interior and border ?

solution € interior
if all neighbors are in the same basin

v

@ Interior is very small

@ Nearly all solutions € border
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Features form the local optima network

nv : fvertices

Iv : avg path length
dj = 1/wj

@ /o : path length to best

fnn : fitness corr.

(F(x), f(y)) with (x,y) € E
wii : self loops

wcc . weighted clust. coef.
zout : out degree

y2 : disparity

knn : degree corr.

(deg(x), deg(y)) with (x,y)

predicting performance

€ E
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Some formal definitions

Weighted clustering coefficient

local density of the network

. 1 Wij + Wip
w _ y e q. .
“0=sw-1 Zjh P

where s; = Z#,- Wij, apm = 1 if Wpm >0, apm = 0 if Wym =0 and

Disparity

| A\

dishomogeneity of nodes with a given degree

wo-2 (%)

j# N

N
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A LON-based fitness landscape analysis approach

@ Link between LON features and problem difficulty :
small-size instances of NK-landscapes

Analysis of the LON structure :
small-size instances of NK-landscapes, QAP and Flowshop

Design of one local search component :
small-size instances of NK-landscapes and Flowshop

Explaining performance with LON properties :
simple correlation, small-size inst. of NK-landscapes, QAP
multi-linear correlation, small-size instances of Flowshop

Prediction performance with LON properties :
large-size instances of NK-landscapes, QAP

Algorithm portfolio :
large-size instances of NK-landscapes, QAP
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Structure of the local optima network

o NK-landscapes (small instances) :
most of features are correlated with k
relevance of the LON definition

—— Basins
-+~ Esc.Di

P(wiW)

average clustering coefficient

i
fandom NN

0.001 001 04 i LER) 50 | 500
w out-degree

@ LON is not a random network (NK, QAP, FSSP) :
highly clustered network,
distribution of weights and degrees have long tail ...
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Example : clustering coefficient for NK-landscapes

—e— Basins
-+- Esc.D1
0.8 -=- Esc.D2

0.6

0.4 1

0.2 1

average clustering coefficient

@ Network highly clustered

o Clustering coefficient decreases with the degree of
non-linearity k
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LON to compare instance difficulty
Local Optima Network for the Quadratic Assignment Problem (QAP) [DTVO11]

ing performance

ing performance

— Community detection in LON :

Random instance Real-like instance

o o —
o I
0 o
0@ o g\ P °
O O o
o O¢ OD °
Q Q @ o
o 0S o
K e —les o v
i oo
AN i A o2
o po ol o5 P od 4
NN o o /
$9 o O ol /O ° {
o
SO @ T ego o :
o~ 270 2 o o
o .@ @90 °
o0 o o o
RS o
.DO 0.0 o °
eor) ®
50 @0 50
o o o @
oo/ 0O o]
o o e]
o [e]
o
co
° 660° %

the structure of the LON is related to problem difficulty J
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basins of attraction

LON features understanding performance predicting performance
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LON to compare algorithm components (1)

comparaison of operators for the

Flowshop Scheduling Problem J

°
®

Clustering Coefficient

°
£

il

'

5 6

7 8
Number of Machines

Operator
B3 exchange

B8 insertion

150~ -
£
5
2
5
= 100~ . Operator
® . B3 exchange
o N
s B8 inserton
g H
3
2 s0-

5 6 7 8 9 10

Number of Machines
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LON to compare algorithm components (2)

comparaison of the hill-climbing'’s pivot rule for NK-landscapes )

K e/, Y d dpest
b-LON [ f-LON | b-LON [ f-LON | b-LON | f-LON | b-LON | f-LON

2 0.81 0.96 0.326 | 0.110 56 39 16 12
4 0.60 0.92 0.137 | 0.033 126 127 35 32
6 0.32 0.79 0.084 | 0.016 170 215 60 70
8 0.17 0.65 0.062 | 0.011 194 282 83 118
10 | 0.09 0.53 0.050 | 0.009 206 340 112 183
12 | 0.05 0.44 0.043 | 0.008 207 380 143 271
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Information given by the local optima network

Advanced questions

@ Can we explain the performance from LON features ?
@ Can we predict the performance from LON features ?

@ Can we select the relevant algorithm from LON features ?
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LON features vs. performance : simple correlation

Algorithm : lterated Local Search on NK-landscapes with N = 18

Performance : ert = E(T;) + (%) T oo

ny Abest d fnn Wii cv zout Yy knn
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ILS performance vs LON metrics

NK-landscapes [DVOT12]

» 16
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average distance to the global optimum

Expected running time

VS.

Average shortest path to the global optimum

35/51



complex systems  definitions ns of attraction LON features understanding performance predicting performance

ILS performance vs LON metrics
Flow-Shop Scheduling Problem [EA'13]
2= Operator D=2
e

Estimated Run-Length with Restarts

102+ oot vt vt o] e e e S
o' 10® 10®° 10* 10° 10" 10® 10®°  10°
Average Length to the Global Optimum

Expected running time
VS.
Average shortest path to the global optimum
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LON features vs. performance : multi-linear regression

understanding performance
00000e®0

© Multiple linear regression on all possible predictors :

log(ert) = Bo + P1k + Bz log(nv) + Balo + - - - + Broknn + €

@ Step-wise backward elimination of each predictor in turn

Predictor Bi Std. Error p-value

(Intercept) 10.3838  0.58512 9.24.10~*
lo 0.0439  0.00434 1.67-10-20
zout —0.0306  0.00831 2.81-10704
y2 —7.2831  1.63038 1.18-107
knn —0.7457  0.40501 6.67-10702

Multiple R? : 0.8494, Adjusted R? : 0.8471
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LON features vs. performance : multi-linear regression

for the Flowshop Scheduling Problem using exhaustive seIectionJ

1P ‘ log(Nv) ccw Fron  knn r log(Lopt) log(Ly) wii Y2 kout ‘ G adjR?
1 2.13 265.54 0.574
2 —5.18 1.43 64.06 0.675
3 1.481 0.895 —0.042 | 16.48 0.700
4 —2.079 1.473 0.540 —0.032 8.75 0.704
5 —2.388 —1.633 1.470 0.528 —0.030 5.97 0.706
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Sampling methodology for large-size instances

From the sampling of large-size complex network :
@ Random walk on the network
@ Breadth-First-Search

Procedure LONSampling(d, m, /)
Xo < hc(x) with x random solution
for t < 0,.../—1do

Snowball(d, m, x;)

x¢+1 + RandomWalkStep(x;)
end for
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Set of estimated LON features for large-size instances

fit
wii
zout
Y2
knn
wcc
fnn

LON metrics

Average fitness of local optima in the network
Average weight of self-loops

Average outdegree

Average disparity for outgoing edges
Weighted assortativity

Weighted clustering coefficient

Fitness-fitness correlation on the network

Ihc
mlhc
nhc

Metrics from the sampling procedure

Average length of hill-climbing to local optima
Maximum length of hill-climbing to local optima
Number of hill-climbing paths to local optima
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Performance prediction based on estimated features

Optimization scenario using off-the-shelf metaheuristics :
TS, SA, EA, ILS on 450 instances for NK and QAP

Performance measures :
average fitness / average rank

Regression model :
multi-linear model / random forest

@ Set of features :
e basic : 1* autocorr. coeff. of fitness (rw of length 10°)
Avg. fitness of local optima (10° hc)
Avg. length to reach local optima (10% hc)
e lon : see previous
e all : basic and lon features

Quality measure of regression :
R? on cross-validation (repeated random sub-sampling)
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R? on cross-validation for NK-landscapes and QAP

Sampling parameters : length ¢ =

100, sampled edge m = 30, deep d =2

predicting performance
00000

NK QAP

Mod. Feat. Perf. TS SA EA ILS avg TS SA EA ILS avg

Im basic  fit 0.8573 0.8739 0.8763 0.8874 0.8737 -38.42 -42.83 -41.63 -39.06  -40.48
Im lon fit 0.8996 0.9015 0.9061 0.8954 0.9007 0.9995 1.0000 1.0000 0.9997 0.9998
Im all fit 0.9356 0.9455 0.9442 0.9501 0.9439 0.9996 0.9997 0.9999 0.9997 0.9997
Im basic rank 0.8591 0.9147 0.6571 0.6401 0.7678 0.2123 0.8324 -0.0123 0.4517 0.3710
Im lon rank 09517 0.9332 0.7783 0.7166 0.8449 0.7893 0.9673 0.8794 0.9015 0.8844
Im all rank  0.9534 0.9355 0.7809 0.7177 0.8469 0.6199 0.9340 0.8577  0.9029 0.8286
rf basic  fit 0.9043 0.9104 0.9074 0.8871 0.9023 0.8811 0.8820 0.8806 0.8801  0.8809
rf lon fit 0.8323 0.8767 0.8567 0.8116 0.8443 0.9009 0.9025 0.9027  0.9019  0.9020
rf all fit 0.8886  0.9334 0.9196 0.8778 0.9048 0.9431 0.9445 0.9437 0.9429 0.9436
rf basic rank 0.9513 0.9433 0.7729 0.8075 0.8687 0.9375 0.9653 0.8710 0.9569  0.9327
rf lon rank  0.9198 0.9291 0.7979 0.7798 0.8566 0.9308 0.9630 0.8820 0.9601  0.9340
rf all rank  0.9554 0.9465 0.8153 0.8151 0.8831 0.9381 0.9668 0.8779 0.9643 0.9368
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Observed vs. estimated performance

@ On the 32 possibles cases (Mod. x Feat. x Algo.),
the best set of features : all 27 times, lon 12 times, basic 6 times

@ With linear model : basic set is never the one of the best set,
lon features are more linearly correlated with performance

@ Random forest model obtains higher regression quality :
basic can be one of the best set (2 times)
Nevertheless, 7/8 cases, all features are the best one

250
250
250

200
200

200

Estimation
100 150
Estimation
100 150
Estimation
100 150

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Performance Performance Performance

basic, R? = 0.9327 lon, R? = 0.9601 all, R? = 0.9643
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Portfolio scenario

@ Portfolio of 4 metaheuristics : TS, SA, EA, ILS

predicting performance

O0000e

@ Classification task : selection of one of the best metaheuristic

@ Models : logit, random forest, svm

@ Quality of classification :

error rate (algo. is not one of the best) on cross-validation

Avg. error rate

Probl.  Feat. logit rf svm cst rnd
basic 0.0379 0.0278 0.0158

NK lon 0.0203 0.0249 0.0168 0.4711 0.6749
all 0.0244 0.0269 0.0165
basic 0.0142 0.0107 0.0771

QAP lon 0.0156 0.0086 0.0456 0.4222 0.6706
all 0.0161 0.0106 0.0431
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Conclusions and perspectives

@ The structure of the local optima network . ..
...can explain problem difficulty

@ LON-features can be used for performance prediction

@ The sampling methodology gives relevant estimation of LON
features for performance prediction and algorithm portfolio

V.

@ Reducing the cost and improving the efficiency of the sampling

@ Other (real-world, black-box) problems and algorithms

@ Understanding the link between the problem definition
and the LON structure

@ Studying the LON as a fitness landscape at a large scale
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Outline

1. FheBastesofFitnesstandseapes
2. Geemetries-of Fitnesstandseapes
3. Leoeal-OptimaNetwork

4. Multi-objective Fitness Landscapes

o Brief overview of (evolutionary) multi-objective optimization
e Features to characterize multi-objective fitness landscapes
o Performance prediction and algorithm selection
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Motivations

vV V. V V

V

multi-objective optimization problems are typically hard
understanding what makes a problem difficult, and how
understanding what makes algorithms work well (or not)

learning about the problem structure might lead to the design
of better algorithms

models to explain and predict the performance of algorithms
based on (relevant) problem features

models to understand the dynamics and the behavior of
algorithms
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Joint work

> Fabio Daolio, University of Stirling, UK
> Hernan Aguirre, Shinshu University, Japan
> Kiyoshi Tanaka, Shinshu University, Japan

Many thanks! /// & hte& ) T3 WET
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(Evolutionary) multi-objective optimization
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Shortest path
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Shortest path

cost
&)
o)
e fastest some paths
© are better
o)

@) .
e o which path
is optimal?

e o)
© e Cheapest
time
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Definitions

A

Xy

\

decision space

X4

objective space

\
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Definitions

A

o ) )
o P “—..___non-dominated
B '
X2
e ¢}
'>x1 f
decision space objective space
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Definitions

Pareto front

\

L 1 L
decision space objective space
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Challenges

Why identifying the Pareto set is difficult? [Ehrgott 2005]

> intractability: the number of Pareto optimal solutions
(non-dominated vectors) typically grows exponentially

> NP-completeness: deciding if a solution is Pareto optimal is
difficult for many multi-objective optimization problems

What about a Pareto set approximation?
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What is a good Pareto set approximation?

Rule of thumb
> closeness to the (exact) Pareto front
> well-distributed solutions in the objective space
> the more, the better?
Quality indicators
> scalar value that reflects an approximation set quality
> IGD, EPS, R-metrics, HV ... (all have limitations and biases)

XA

. 1 -
decision space objective space
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pI\/INK-landsca PES [Kauffman 1993; Aguirre & Tanaka 2007; Verel et al. 2010]
general-purpose family of multi-modal pseudo-boolean optimization functions
superposition of n Walsh functions of order k+1

max ﬁ(X):%Zle‘—]{()%’%a---v’ﬁk) , 1e{l,...,m}

Avg objective correlation

Avg objective correlation

s.t. x; € {0,1}

, j€{1,...,n}

Benchmark parameters:

>

>

problem size n
(decision space dimension)

problem non-linearity k < n
(multi-modality, epistatic interactions)

number of objective functions m

(objective space dimension)

objective correlation p > ——1-

m—1
— multivariate uniform law
— analytical and experimental proofs

9/36


http://mocobench.sf.net

emo features prediction
000000e000 00000000000000 000000

Some intuitions on objective correlation p

0.8 0.8 T T T T T 0.8 T T T T T
0.7 0.7 0.7
0.6 0.6 0.6
« « «
2 2 2
B 051 B 051 B 051
2, 2 o 2
o o o
(o) (o) (o)
0.4 0.4 0.4
0.3 0.3 0.3
0.2 L L L L L 0.2 L L L . L L 0.2 L L L L L
02 03 04 05 06 07 08 02 03 04 05 06 07 08 02 03 04 05 06 07 08
Objective 1 Objective 1 Objective 1
conflicting objectives independent objectives correlated objectives
p=-—09 p=0.0 p=0.9
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EMO algorithm classes

Scalarizing approaches
> multiple aggregations of the objectives (e.g. weighted-sum)
> beware of unsupported solutions
> MOSA, MOTS, TPLS, MOEA/D ...
Dominance-based approaches
> search process guided by a dominance relation
> NSGA-II, SPEA2, PAES, PLS, SEMO, AeSeH ...
Indicator-based approaches
> search process guided by a quality indicator
> IBEA, IBMOLS, SMS-EMOA, HypE ...

supported
solution
°

Objective space fy Objective space f
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Two prototypical dominance-based EMO algorithms

local search global search
multi-objective hill-climber multi-objective (1 + 1)—EA
PLS G-SEMO
[Paquete et al. 2004] [Laumanns et al. 2004]
A+ {Xo} A+ {Xo}
repeat repeat
select x € A at random select x € A at random
for all X’ s.t. ||x—x'||y =1do X' x
A + non-dominated flip each bit x/ with a rate 2
solutions from AU {x’} A < non-dominated
end for solutions from AU {x’}
until stop until stop
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Pareto local search (PLS) [Paquete et al. 2004]

mhmm,
* wasessowions | > Archive solutions using
d dat [ Q visited solutions . .
the dominance relation
neighborhood . . .
exploration > lteratively improve this
archive by exploring its
arclme .
neighborhood
cun’em set
selection
curreul set
f2 f2 fz f2
° L] L] L]
e o L] L] L] L] L] L]
L] L] L]
o o o Accept o
o ® . ® o o L] o L]
o Accept neighbor o o 0 © °
° No Accept L4 L4 e
e}
current current current current
archive ® archive \o ° archive \o ® archive ®

Objective space fi Objective space fi Objective space fi Objective space fi
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Problem features
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Benchmark parameters

Parameters from pmnk-landscapes

n problem size
(solution space dimension)
k problem non-linearity
(number of epistatic interactions)
m number of objective functions
(objective space dimension)
p objective correlation
(correlation between the objective function values)

max f,-(x):% J’.’Zlcj(><j,>g1,...,><jk) , 1€{l,...,m}
s.t. XJE{O,].} ) jG{l,...,n}
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Global features from full enumeration (1)

Features from the Pareto set/solution space

+ PO

fa e non-PO

A
@  supported
non-supported #po Pareto optimal (PO) sol.
oy .
Qo #supp supported PO solutions

hv PF's hypervolume
#fronts non-dominated fronts

front_ent entropy of front's size
distribution
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Global features from full enumeration (2)

Features from the Pareto set/graph

N podist_avg avg Hamming distance
podist max max distance (diameter)

O0 fdc fitness-distance correlation

— #cc connected components

#sing singletons

: #lcc largest connected comp.
O lcc dist avg distance in LCC

. lcc hv LCC's hypervolume
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Global features from full enumeration (3)
Local optimality

M PLO
o

o'i o
#plo Pareto local optimal

Q .
o-—’f}‘,o‘\ (PLO) solutions

@ L0 N #slo_avg single-objective local
' optima (SLO) per
o o 9 objective (avg)
o M SLO ()
o
> fi
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Local features from sampling (1)

Multi-objective adaptive/random walk

» f1

adaptive walk sampling (aws) random walk sampling (rws)
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Local features from sampling (2)

Dominance-based metrics

>

+ locally
f2 non-dominated

@® supported
non-supported >

>
>
dominated >
neighbors
i
>

locally non-dominated solutions in
the neighborhood

supported locally non-dominated
solutions in the neighborhood

neighbors dominated by the current
solution

neighbors dominating the current
solution

neighbors incomparable to the
current solution

average length of aws
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Local features from sampling (3)

Hypervolume-based metrics

> (single) solution’s hypervolume

> (single) solution’s hypervolume
difference

> neighborhood’s hypervolume
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Summary of problem features (1)

BENCHMARK parameters (4)

n number of (binary) variables
kn proportional number of variable interactions (epistatic links) : k/n
m number of objectives
p correlation between the objective values

GLOBAL FEATURES FROM full enumeration (16)
#po proportion of Pareto optimal (PO) solutions knowles2003
#supp proportion of supported solutions in the Pareto set knowles2003
hv hypervolume-value of the (exact) Pareto front aguirre2007
#plo proportion of Pareto local optimal (PLO) solutions paquete2007
#slo_avg average proportion of single-objective local optimal solutions per objective
podist_avg average Hamming distance between Pareto optimal solutions liefooghe2013
podistmax maximal Hamming distance between Pareto optimal solutions (diameter of the Pareto set) knowles2003
po_ent entropy of binary variables from Pareto optimal solutions knowles2003
fdc fitness-distance correlation in the Pareto set (Hamming dist. in solution space vs. Manhattan dist. in objective space) knowles2003
#ee proportion of connected components in the Pareto graph paquete2009
#sing proportion of isolated Pareto optimal solutions (singletons) in the Pareto graph paquete2009
#lcc proportional size of the largest connected component in the Pareto graph verel2011
lccdist average Hamming distance between solutions from the largest connected component
lcchv proportion of hypervolume covered by the largest connected component
#fronts proportion of non-dominated fronts aguirre2007
front_ent  entropy of the non-dominated front's size distribution
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Summary of problem features (2)

LOCAL FEATURES FROM RANDOM WALK sampling (rws) (17)

hv_avg_rvs
hv_ri_rus
hvd_avg rws
hvd_ri_rvs
nhv_avg_rws
nhv_ri_rus
#1nd_avg rus
#1nd_r1_rus
#1supp_avg_rus
#1supp_rirws
#inf_avg rus
#inf_rlrus
#sup_avg_rus
#sup_rl_rus
#inc_avg rus
#inc_rlrus
f_cor_rws

average (single) solution’s hypervolume-value

first autocorrelation coefficient of (single) solution's hypervolume-values liefooghe2013
average (single) solution’s hypervolume difference-value

first autocorrelation coefficient of (single) solution’s hypervolume difference-values liefooghe2013
average neighborhood's hypervolume-value

first autocorrelation ient of neij 's hypen I

average proportion of locally i solutions in the

first autocorrelation coefficient of the proportion of locally non-dominated solutions in the neighborhood

average proportion of supported locally non-dominated solutions in the neighborhood

first autocorrelation coefficient of the proportion of supported locally non-dominated solutions in the neighborhood

average proportion of neighbors dominated by the current solution

first autocorrelation coefficient of the proportion of neighbors dominated by the current solution

average proportion of neighbors dominating the current solution

first autocorrelation coefficient of the proportion of neighbors dominating the current solution

average proportion of neighbors incomparable to the current solution

first autocorrelation coefficient of the proportion of neighbors incomparable to the current solution

estimated correlation between the objective values

LOCAL FEATURES FROM ADAPTIVE WALK sampling (aws) (9)

hv_avg_avs
hvd_avg_aws
nhv_avg_aws
#1nd_avg_avs
#1supp_avg_aws
#inf_avg_aws
#sup_avg avs
#inc_avg avs
length_aws

average (single) solution’s hypervolume-value

average (single) solution's hypervolume difference-value
average neighborhood's hypervolume-value

average proportion of locally solutions in the
average proportion of supported locally non-dominated solutions in the neighborhood

average proportion of neighbors dominated by the current solution

average proportion of neighbors dominating the current solution

average proportion of neighbors incomparable to the current solution

average length of Pareto-based adaptive walks verel2011
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Experimental setup for enumerable instances

Small-size pMNK-landscapes, factorial design, 30 instances

>

>
>
>

problem size n € {10,11,12,13,14,15,16}
problem non-linearity k € {0,1,2,3,4,5,6,7,8}
number of objectives m € {2,3,4,5}

objective correlation
p € {-0.8,-0.6,—0.4,-0.2,0,0.2,0.4,0.6,0.8,1}, p > —L-

60480 problem instances overall
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Pairwise feature association (enumerable instances)
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Experimental setup for large-size instances

Large-size pMNK-landscapes, constrained random LHS DOE
> problem size n € [64,256]
> problem non-linearity k € [0, 8]
> number of objectives m € [2,5]
> objective correlation p € [-1,1], p > m;_ll

1000 problem instances overall

26/36
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Pairwise feature association (large-size instances)
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Feature-based performance prediction
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Experimental setup for large-size instances

Large-size pMNK-landscapes, constrained random LHS DOE
> problem size n € [64,2560]
> problem non-linearity k € [0, 8]
> number of objectives m € [2,5]
> objective correlation p € [-1,1], p > m;—ll

1000 problem instances overall

GSEMO and IPLS algorithms
> 30 independent runs per instance
> Fixed budget of 100000 evaluation calls

> epsilon approximation ratio to best-found non-dominated set
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Prediction accuracy

cross validation with repeated subsampling, 50 iterations, 90/10 split

feature set | MAE MSE R®  rank
GSEMO
all 0.003049 0.000017 0.891227 1
sampling all 0.003152 0.000018 0.883909 1.3
sampling rws 0.003220  0.000019  0.878212 2
sampling aws 0.003525  0.000023  0.854199 3
p+m+n+k/n | 0.003084 0.000017 0.892947 1
p+m-+n 0.009062  0.000148  0.065258 4
m-+n 0.010813  0.000206 -0.303336 5
IPLS
all 0.004290 0.000034 0.886568 1
sampling all 0.004359 0.000035 0.883323 1
sampling rws | 0.004449  0.000036 0.879936 1.3
sampling aws | 0.004663  0.000039  0.871011 2
p+m-+n+k/n | 0.004353 0.000033 0.889872 1
p+m+n 0.008415  0.000119  0.600965 3
m+n 0.016959  0.000472 -0.568495 4

prediction
00®000
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Predicted vs observed values (out-of-folds)
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Features importance

GSEMO

nhv_ri_rws-
hvd_r1_rws-
length_aws - -
#sup_avg_aws -
#ine_ri_rws- [
n-
hv_r_rws- -
#nd_r_ws- [

#sup_r1_rws-

hv_avg_rws-
#inf_r1_rws- -
#inc_avg_rws -
#sup_avg_rws- [l

#ind_avg_aws -

hv_avg_aws -
#nd_avg_rws -
hvd_avg_rws -
n
hvd_avg_aws -
#inc_avg_aws -
#inf_avg_rws -
#inf_avg_aws -
nhv_avg_rws -
nhv_avg_aws -
#isupp_r1_rws -
f_cor_rws-
rho-
#lsupp_avg_aws -
#lsupp_avg_rws -

features
00000000000000

#inc_avg_rws
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#sup_avg_rws -
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rho+

f_cor_rws+
#inf_avg_rws
#Ind_avg_aws
#nd_avg_rws -
hv_avg_aws
#supp_r1_rws
m

hv_avg_rws+
#sup_ri_rws
#inf_r1_rws
k_n+
nhv_avg_aws -
nhv_avg_rws+
nhv_r1_rws+
#inc_r1_rws+
hvd_r1_rws
#Ind_r1_rws+
hvd_avg_rws
hv_r1_rws
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hvd_avg_aws
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Portfolio accuracy

cross validation with repeated subsampling, 50 iterations, 90/10 split

Portfolio: { GSEMO , IPLS }

feature set error rate  rank
all 0.0128 1
sampling all 0.0138 1
sampling rws 0.0150 1
sampling aws 0.0144 1
p+m+n+k/n 0.0134 1
p+m—+n 0.0824 2
m+-n 0.1328 3
const=GSEMO 0.0880

const=IPLS 0.7250

prediction
00000e®
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Complementary/concluding remarks

34/36



Set-based multi-objective fitness landscapes

A complementary view?

Key idea

> EMO algorithms are local search algorithms performing on sets
[Zitzler et al 2010]

Set-based multi-objective fitness landscape (X, N, I) [Verel et al 2011]

> Set-domain search space (X)
¥ C 2X is a set of feasible solution-sets
(where X is the set of feasible solutions)
> Set-domain neighborhood relation (N)
N: ¥ — 2% is a neighborhood relation between solution-sets
> Set-domain fitness function (I)
I:Y — R is a unary quality indicator, e.g. hypervolume
i.e. a fitness function measuring the quality of solution-sets
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Conclusions and open issues

Features to characterize multi-objective fitness landscapes

°
@ Those features relate to problem difficulty

@ Gaining knowledge about the multi-objective opt. problem
°

Algorithm performance can be predicted using those features
(for some problem /algorithm classes)

And now?
@ Improving the design and configuration of EMO algorithms?
@ Multi-objective algorithm portfolio?
@ More theoretical works about EMQ?
@ Designing cheap features?
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Concluding remarks
©0000

Basic methodology of fitness landscapes analysis

@ Density of states : pure random search, initialization ?
@ Length of adaptive walks : multimodality ?

@ Fitness autocorrelation : ruggedness ?

@ Neutral degree distribution : neutrality ?

@ Fitness cloud : Quality of the operator, evolvability ?

@ Neutral walks and evolvability : neutral information ?

@ Features from the local optima network : structure at LO level 7

Recent review : Katherine M. Malan, Information Sciences, (2013)
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Basic methodology of fitness landscapes analysis

@ Density of states : pure random search, initialization ?

@ Length of adaptive walks : multimodality ?

@ Fitness autocorrelation : ruggedness ?

@ Neutral degree distribution : neutrality ?

@ Fitness cloud : Quality of the operator, evolvability ?

@ Neutral walks and evolvability : neutral information ?

@ Features from the local optima network : structure at LO level 7
@ ... be creative from your algorithm and problem point of view

@ ... be careful on the computed measures : one measure is not
enough, and must be very well understood

Recent review : Katherine M. Malan, Information Sciences, (2013)
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Sofware to perform fitness landscape analysis

Framework ParadisEQO

http://paradiseo.gforge.inria.fr
Brodiseo

C++ software framework for the the reusable of metaheuristics

(local search, EA, continuous, discrete, parallel, fitness landscape. . .)

moAutocorrelationSampling<Neighbor> sampling(randomInitialization,
neighborhood,
evalFunction,
neighborEvaluation,
nbStep) ;

sampling();

sampling.fileExport (str_out);


http://paradiseo.gforge.inria.fr

Concluding remarks
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Summary on fitness landscapes

Fitness landscape is a representation of

@ search space
@ notion of neighborhood

@ fitness of solutions




Concluding remarks
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Summary on fitness landscapes

Fitness landscape is a representation of

@ search space
@ notion of neighborhood

@ fitness of solutions

@ local description : fitness between neighboring solutions
Ruggedness, local optima, fitness cloud, neutral networks,
local optima networks. . .

@ ... to deduce global features :

o Difficulty!
o Decide (and control) a good choice for the representation,
variation operator and fitness function
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Open issues

How to control the parameters of the algorithm with the
local description of fitness landscape ?

Links between neutrality and time complexity (difficulty) ?

Can fitness landscape describe the dynamics of a population
of solutions ?

Fitness landscape for parallel algorithm (island model) ?
What about crossover ?
Multi-objective, continuous optimization problems. . .

Links with theoretical approaches
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Open issues

@ Which "aggregation of variables” shows relevant properties
of the optimization problem according to the local search
heuristic ?

X - . x




Concluding remarks
ooooe

Open issues

@ Which "aggregation of variables” shows relevant properties
of the optimization problem according to the local search
heuristic 7

X - . x

Thanks for your attention !



