

Evolutionary Computation for Non-Convex Machine Learning

Ke Tang Southern University of Science and Technology

> Yang Yu Nanjing University

Outlines

- The need of machine learning
- Evolutionary computation for supervised Learning New case studies.
- Evolutionary Reinforcement Learning

- Three key components of machine learning:
 - Data/model representation
 - Evaluation
 - Training algorithm
- Most modern machine learning problems are essentially searching for the model that is optimal with respect to some objective function (e.g., generalization).
- Optimization algorithms thus play a crucial role in machine learning.

- Many machine learning tasks, when formulated as an optimization problem, cannot be well solved by traditional (e.g., convex) optimization techniques.
- Plan A: Approximate the original (non-convex) optimization problem with a convex one.
- Plan B: Seek an approximate solution to the original problem with heuristic methods, e.g., Evolutionary algorithms.

EAs have been applied to a large variety of learning problems in the past decades.

- Data representation
 - Feature selection
 - Feature extraction
 - Dimensionality Reduction
- Model training
 - Decision tree
 - Neural networks
 - Rule-based systems
 - Clustering
- Hyper-parameter tuning

Machine learning has its own characteristics that calls for specialized EAs.

- Huge problem size (i.e., the search space).
- Noisy fitness evaluation (since the generalization cannot be precisely measured)
- Expensive fitness evaluation
- Theoretical guarantee is more preferred than in other areas.

• Subset selection: select a subset of size k from a total set of n variables for optimizing some criterion.

Formally stated: given all variables $V = \{X_1, ..., X_n\}$, a criterion f and a positive integer k,

arg $min_{S\subseteq V} f(S)$ s.t. $|S| \le k$.

- NP-hard in general [Natarajan,1995; Davis et al., 1997] and arises in many learning problems:
 - Feature Selection
 - Sparse Learning
 - Compressed Sensing

- Greedy algorithms [Gilbert et al., SODA'03; Tropp, TIT'04]
 - Process: iteratively select or abandon one variable that makes the criterion currently optimized
 - Weakness: get stuck in local optima due to the greedy behavior

- Convex relaxation methods [Tibshirani, JRSSB'96; Zou & Hastie, JRSSB'05]
 - Process: replace the set size constraint with convex constraints, then find the optimal solutions to the relaxed problem.
 - Weakness: the optimal solution of the relaxed problem may be distant to the true optimum.

- There have been numerous EAs for subset selection, while rigorous theoretical guarantee is few.
- Subset Selection as a bi-objective optimization problem

POSS (Pareto Optimization for Subset Selection)

The basic idea: $min_{S \subseteq V} f(S) \ s.t. \ |S| \le k$ constrained $\ensuremath{\bigcup}$ $\ensuremath{\bigcup}$ $min_{S \subseteq V} (f(S), |S|)$ bi-objective

Algorithm	1	POSS
-----------	---	------

Input: all variables $V = \{X_1, \ldots, X_n\}$, a given objective f and an integer parameter $k \in [1, n]$ **Parameter**: the number of iterations T **Output**: a subset of V with at most k variables Process: 1: Let $s = \{0\}^n$ and $P = \{s\}$. 2: Let t = 0. 3: while t < T do Select *s* from *P* uniformly at random. 4: Generate s' by flipping each bit of s with prob. $\frac{1}{2}$. 5: Evaluate $f_1(s')$ and $f_2(s')$. 6: if $\exists z \in P$ such that $z \prec s'$ then 7: $Q = \{ z \in P \mid s' \preceq z \}.$ 8: $P = (P \setminus Q) \cup \{s'\}.$ 9: end if 10:t = t + 1.12: end while

13: return $\operatorname{arg\,min}_{s \in P, |s| \le k} f_1(s)$

Initialization: randomly generate a solution, put it into the archive *P*

Reproduction: pick a solution randomly from P, and randomly change it to make a new one

Evaluation & Selection: if the new solution is not dominated, put it into *P* and weed out bad solutions

Output: select the best feasible solution

Chaoqian paper

• Sparse regression is to find a sparse approximation solution to the regression problem.

Formally stated: given all observation variables $V = \{X_1, ..., X_n\}$, a predictor variable Z and a positive integer k, define the mean squared error of a subset $S \subseteq V$ as $MSE_{Z,S} = min_{\alpha \in R}|_{S|} E[(Z - \sum_{i \in S} \alpha_i X_i)^2]$ Sparse regression is $\arg min_{S \subseteq V} MSE_{Z,S} s.t. |S| \leq k.$

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Subset Selection by Pareto Optimization.In: Advances in Neural Information Processing Systems 28 (NIPS'15), Montreal, Canada, 2015, pp.1765-1773.

Previous theoretical bounds:

u: the coherence, γ : the submodular ratio

- [Gilbert et al., 2003]: $(1 + \Theta(uk^2)) \cdot OPT$ on $MSE_{Z,S}$ for $u \in O(1/k)$ by a two-phased approach
- [Tropp et al., 2003; Tropp, 2004]: improve the above bound
- [Das & Kempe, 2008]: $(1 \Theta(uk)) \cdot OPT$ on $R_{Z,S}^2$ for $u \in O(1/k)$ by the forward regression algorithm
- [Das & Kempe, 2011]: $(1 e^{-\gamma}) \cdot OPT$ on $R^2_{Z,S}$ by the forward regression algorithm
- [Shalev-Shwartz et al., 2010; Yuan & Yan, 2013]: lower bounds on |S| for achieving OPT + ε

strongest

Theorem 1. For sparse regression, POSS with $E[T] \leq 2ek^2n$ and $I(\cdot) = 0$ (i.e., a constant function) finds a set S of variables with $|S| \leq k$ and $R_{Z,S}^2 \geq (1 - e^{-\gamma_{\emptyset,k}}) \cdot OPT$.

the best previous theoretical guarantee

POSS can do at least as well as previous methods.

Theorem 2. For the Exponential Decay subclass of sparse regression, POSS with $E[T] \in O(k^2n^2\log n)$ and $I(s \in \{0,1\}^n) = \min\{i \mid s_i = 1\}$ can find the optimal solution.

Proposition 1. For Example 1 with n = 3, $r_2 = 0.03$, $r_3 = 0.5$, $Cov(Y_1, Z) = Cov(Y_2, Z) = \delta$ and $Cov(Y_3, Z) = 0.505\delta$, FR cannot find the optimal solution for k = 2.

POSS can do strictly better than previous methods.

• POSS for Sparse Regression: Summary

the number of iterations

the best known polynomial-time approximation bound [Das & Kempe, ICML'11]

	Data set	OPT	POSS	FR	FoBa	OMP	RFE	MCP
	housing	.7437±.0297	.7437±.0297	.7429±.0300•	.7423±.0301•	.7415±.0300•	.7388±.0304•	.7354±.0297•
	eunite2001	.8484±.0132	.8482±.0132	.8348±.0143•	.8442±.0144•	.8349±.0150•	.8424±.0153•	.8320±.0150•
	svmguide3	.2705±.0255	.2701±.0257	.2615±.0260•	.2601±.0279•	.2557±.0270●	.2136±.0325•	.2397±.0237•
	ionosphere	.5995±.0326	.5990±.0329	.5920±.0352•	.5929±.0346●	.5921±.0353•	.5832±.0415•	.5740±.0348•
	sonar	_	$.5365 \pm .0410$.5171±.0440●	.5138±.0432•	.5112±.0425•	.4321±.0636•	.4496±.0482•
Fyneriment	triazines	_	.4301±.0603	.4150±.0592•	.4107±.0600•	.4073±.0591•	.3615±.0712•	.3793±.0584•
Lapermient	coil2000	-	$.0627 \pm .0076$.0624±.0076•	.0619±.0075•	.0619±.0075•	.0363±.0141•	.0570±.0075•
	mushrooms	_	.9912±.0020	.9909±.0021•	.9909±.0022•	.9909±.0022•	.6813±.1294•	.8652±.0474•
	clean1	_	.4368±.0300	.4169±.0299•	.4145±.0309•	.4132±.0315•	.1596±.0562•	.3563±.0364•
	w5a	_	.3376±.0267	.3319±.0247•	.3341±.0258•	.3313±.0246•	.3342±.0276•	.2694±.0385•
	gisette	-	$.7265 \pm .0098$.7001±.0116•	.6747±.0145•	.6731±.0134•	.5360±.0318•	.5709±.0123•
	farm-ads	_	$.4217 \pm .0100$.4196±.0101•	.4170±.0113•	.4170±.0113•	-	.3771±.0110•
	POSS: w	vin/tie/loss	-	12/0/0	12/0/0	12/0/0	11/0/0	12/0/0

significantly better than all the compared methods on all data sets

A sequential algorithm that cannot be readily parallelized restrict the application to large-scale real-world problems

Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Parallel Pareto Optimization for Subset Selection. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16), New York, NY, 2016, pp.1939-1945.

• Theoretical results

 $f(S_2) \ge f(S_1)$ for any $S_1 \subseteq S_2$ **Theorem 1.** For maximizing a monotone function under the set size constraint, the expected number of iterations until PPOSS finds a solution s with $|s| \le k$ and $f(s) \ge (1 - e^{-\gamma_{\min}}) \cdot OPT$, where $\gamma_{\min} = \min_{s:|s|=k-1} \gamma_{s,k}$, is (1) if N = o(n), then $\mathbb{E}[T] \le 2ek^2n/N$; (2) if $N = \Omega(n^i)$ for $1 \le i \le k$, then $\mathbb{E}[T] = O(k^2/i)$; (3) if $N = \Omega(n^{\min\{3k-1,n\}})$, then $\mathbb{E}[T] = O(1)$.

- When the number of processors is less than the number of variables, the number of iterations can be reduced linearly w.r.t. the number of processors
- With increasing number of processors, the number of iterations can be continuously reduced, eventually to a constant

The best previous known bound

- submodular [Nemhauser & Wolsey, MOR'78]
- sparse regression (non-submodular) [Das & Kempe, ICML'11]

$$\arg \min_{S \subseteq V} MSE_{Z,S} s.t. |S| \le k$$

Sparse regression

$$R_{Z,S}^{2} = (Var(Z) - MSE_{Z,S})/Var(Z)$$

the larger the better

	data set	#inst	#feat	data set	#inst	#feat	data set	#inst	#feat
	housing	506	13	sonar	208	60	clean1	476	166
data set	eunite2001	367	16	triazines	186	60	w5a	9888	300
	svmguide3	1284	21	coil2000	9000	86	gisette	7000	5000
	ionosphere	351	34	mushrooms	8124	112	farm-ads	4143	54877

the sparsity k = 8

the number of cores $N = 1 \rightarrow 10$

For PPOSS with each *N* value on each data set, the run is repeated for 10 runs independently, and the average results are reported

Compare the speedup as well as the solution quality measured by R^2 values with different number of cores

PPOSS (blue line): achieve speedup around 8 when the number of cores is 10; the R^2 values are stable

PPOSS-asy (red line): achieve better speedup (avoid the synchronous cost); the *R*² values are slightly worse (the noise from asynchronization)

• Ensemble Pruning is also a subset selection problem.

• PEP: Pareto Ensemble Pruning

				Test Er	rror					
Data set	PEP	Bagging	BI	RE	Kappa	CP	MD	DREP	EA	
australian	.144±.020	.143±.017	.152±.023•	.144±.020	$.143 \pm .021$	$.145 \pm .022$.148±.022	.144±.019	$.143 \pm .020$	
breast-cancer	$.275 \pm .041$.279±.037	.298±.044•	.277±.031	$.287 \pm .037$.282±.043	.295±.044•	$.275 \pm .036$	$.275 \pm .032$	
disorders	$.304 \pm .039$.327±.047•	.365±.047●	.320±.044•	.326±.042•	.306±.039	.337±.035•	.316±.045	.317±.046●	
heart-statlog	.197±.037	.195±.038	.235±.049•	$.187 \pm .044$.201±.038	.199±.044	.226±.048●	.194±.044	.196±.032	
house-votes	.045±.019	$.041 \pm .013$.047±.016	.043±.018	$.044 \pm .017$	$.045 \pm .017$.048±.018●	$.045 \pm .017$	$.041 \pm .012$	
ionosphere	.088±.021	.092±.025	.117±.022•	.086±.021	$.084 \pm .020$	$.089 \pm .021$.100±.026•	.085±.021	.093±.026	
kr-vs-kp	$.010 \pm .003$.015±.007•	.011±.004	$.010 \pm .004$	$.010 \pm .003$.011±.003	.011±.005	.011±.003	.012±.004	
letter-ah	.013±.005	.021±.006•	.023±.008•	.015±.006•	$.012 \pm .006$	$.015 \pm .006$.017±.007•	.014±.005	.017±.006●	
letter-br	$.046 \pm .008$.059±.013•	.078±.012●	.048±.012	$.048 \pm .014$	$.048 \pm .012$.057±.014•	.048±.009	.053±.011•	
letter-oq	.043±.009	.049±.012•	.078±.017•	.046±.011	$.042 \pm .011$	$.042 \pm .010$	$.046 \pm .011$	$.041 \pm .010$	$.044 \pm .011$	
optdigits	$.035 \pm .006$.038±.007•	.095±.008•	.036±.006	$.035 \pm .005$	$.036 \pm .005$.037±.006•	$.035 \pm .006$	$.035 \pm .006$	
satimage-12v57	$.028 \pm .004$.029±.004	.052±.006•	.029±.004	$.028 \pm .004$	$.029 \pm .004$	$.029 \pm .004$	$.029 \pm .004$	$.029 \pm .004$	
satimage-2v5	$.021 \pm .007$.023±.009	.033±.010•	$.023 \pm .007$	$.022 \pm .007$	$.021 \pm .008$.026±.010•	.022±.008	$.021 \pm .008$	
sick	$.015 \pm .003$.018±.004•	.018±.004•	.016±.003	.017±.003●	.016±.003•	.017±.003●	$.016 \pm .003$.017±.004●	
sonar	$.248 \pm .056$.266±.052	.310±.051•	.267±.053●	.249±.059	$.250 \pm .048$.268±.055•	.257±.056	.251±.041	
spambase	$.065 \pm .006$.068±.007•	.093±.008•	.066±.006	$.066 \pm .006$	$.066 \pm .006$.068±.007•	$.065 \pm .006$.066±.006	
tic-tac-toe	.131±.027	.164±.028●	.212±.028•	.135±.026	.132±.023	$.132 \pm .026$.145±.022•	$.129 \pm .026$.138±.020	
vehicle-bo-vs	$.224 \pm .023$.228±.026	.257±.025•	.226±.022	.233±.024•	.234±.024•	.244±.024•	.234±.026•	.230±.024	
vehicle-b-v	$.018 \pm .011$.027±.014•	.024±.013•	.020±.011	$.019 \pm .012$	$.020 \pm .011$.021±.011•	.019±.013	.026±.013•	
vote	.044±.018	.047±.018	.046±.016	.044±.017	$.041 \pm .016$.043±.016	$.045 \pm .014$.043±.019	.045±.015	
count of the best	12	2	0	2	7	1	0	5	5	
PEP: count of	direct win	17	20	15.5	12.5	17	20	12.5	15.5	

Better than any other method on more than 60% (12.5/20) data sets, and never significantly worse

			Ensemble	e Size			
Data set	PEP	RE	Kappa	CP	MD	DREP	EA
australian	10.6 ± 4.2	12.5 ± 6.0	14.7 ± 12.6	11.0±9.7	8.5 ± 14.8	11.7 ± 4.7	41.9±6.7●
breast-cancer	8.4 ± 3.5	8.7±3.6	26.1±21.7●	8.8 ± 12.3	7.8 ± 15.2	9.2 ± 3.7	44.6±6.6●
disorders	14.7 ± 4.2	13.9 ± 4.2	24.7±16.3●	15.3 ± 10.6	17.7 ± 20.0	13.9 ± 5.9	42.0±6.2●
heart-statlog	9.3 ± 2.3	11.4±5.0●	17.9±11.1●	13.2±8.2●	13.6 ± 21.1	11.3±2.7•	44.2±5.1•
house-votes	2.9 ± 1.7	3.9±4.0	5.5±3.3●	4.7±4.4●	5.9 ± 14.1	4.1±2.7●	46.5±6.1●
ionosphere	5.2 ± 2.2	7.9±5.7∙	10.5±6.9●	8.5±6.3●	10.7±14.6●	8.4±4.3●	48.8±5.1●
kr-vs-kp	4.2 ± 1.8	5.8±4.5	10.6±9.1●	9.6±8.6●	7.2 ± 15.2	7.1±3.9●	45.9±5.8●
letter-ah	5.0 ± 1.9	7.3±4.4●	7.1±3.8●	8.7±4.7●	11.0±10.9●	7.8±3.6●	42.5±6.5●
letter-br	10.9 ± 2.6	15.1±7.3●	13.8±6.7●	12.9 ± 6.8	23.2±17.6•	11.3 ± 3.5	38.3±7.8●
letter-oq	12.0 ± 3.7	13.6±5.8	13.9 ± 6.0	12.3 ± 4.9	23.0±15.6•	13.7 ± 4.9	39.3±8.2●
optdigits	22.7 ± 3.1	25.0 ± 9.3	25.2 ± 8.1	21.4 ± 7.5	46.8±23.9●	25.0 ± 8.0	41.4±7.6●
satimage-12v57	17.1 ± 5.0	20.8±9.2●	22.1±10.3•	21.2±10.0●	37.6±24.3●	18.1 ± 4.9	42.7±5.2●
satimage-2v5	5.7 ± 1.7	6.8±3.2	7.6±4.2●	10.9±7.0●	26.2±28.1●	7.7±3.5∙	44.1±4.8●
sick	6.9 ± 2.8	7.5±3.9	10.9±6.0●	11.5±10.0●	8.3±13.6	11.6±6.7●	44.7±8.2●
sonar	11.4 ± 4.2	11.0 ± 4.1	20.6±9.3●	13.9 ± 7.1	20.6±20.7•	14.4±5.9●	43.1±6.4●
spambase	17.5 ± 4.5	18.5 ± 5.0	20.0 ± 8.1	19.0±9.9	28.8±17.0●	16.7 ± 4.6	39.7±6.4●
tic-tac-toe	14.5 ± 3.8	16.1 ± 5.4	17.4 ± 6.5	15.4 ± 6.3	28.0±22.6•	13.6 ± 3.4	39.8±8.2●
vehicle-bo-vs	16.5 ± 4.5	15.7±5.7	16.5 ± 8.2	$11.2 \pm 5.7 \circ$	21.6 ± 20.4	13.2±5.0°	41.9±5.6●
vehicle-b-v	2.8 ± 1.1	3.4 ± 2.1	4.5±1.6●	5.3 ± 7.4	2.8 ± 3.8	4.0 ± 3.9	48.0±5.6●
vote	2.7 ± 1.1	3.2 ± 2.7	5.1±2.6•	5.4±5.2•	6.0 ± 9.8	3.9±2.5●	47.8±6.1●
count of the best	12	2	0	2	3	3	0
PEP: count of (direct win	17	19.5	18	17.5	16	20

Better than any other method on more than 80% (16/20) data sets; never significantly worse, except two losses

Chao Qian, Yang Yu, and Zhi-Hua Zhou. Pareto Ensemble Pruning. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI'15), Austin, TX, 2015, pp.2935-2941.

- Many real-world classification problems are cost-sensitive.
- The optimal classifier for a binary classification problem

$$h_{opt} = \underset{h \in \Omega}{\operatorname{argmin}} C_{10} \cdot FNR(h) + C_{01} \cdot FPR(h)$$
(1)

	Cost matr	TIX		Confusion m	atrix
	Predicted +	Predicted -		Predicted +	Predicted -
+	0	C_{10}	+	TPR	FNR
_	C_{01}	0	_	FPR	TNR

• A good classifier could be used via *cost-sensitive learning*.

- However, costs are often subject to great uncertainty.
 - Very difficult to specify the exact cost values *before training*.
 - The costs may change over time.
- Alternative: seeking a group of classifiers that maximize the the Receiver Operating Characteristic (ROC) convex hull.

"The optimal classifier for any cost values must be a vertex or on the edge of the convex hull of all (achievable) classifiers in the ROC space." [Provost and Fawcett, 2001]

- New Learning Target: To obtain a set of classifiers such that their ROCCH is maximized.
- This is a set-oriented optimization problem can could hardly be solved with existing approaches.

• Evolutionary Algorithms provides a natural way to search for a set (population) of classifiers.

- Multi-objective evolutionary algorithms (MOEAs) are off-the-shelf tools for this problem
 - Maximize TPR
 - Minimize FPR
- Direct application of an MOEA is OK, while not ideal.
 - A Pareto optimal solution is not necessarily a vertex on the convex hull.
 - Many-to-one mapping between the hypothesis and ROC spaces.

- Approach: Convex Hull-based MOEA (CH-MOEA)
- Features of CH-MOEA:
 - Convex hull-based sorting
 - Redundancy elimination

• Redundancy Elimination

- CH-MOEA can be combined with any base learners to build either homogeneous and heterogeneous ensembles
 - Neural Network
 - Decision Tree
 - SVM
 - ...
- Different types of base learners need different search operators.
- We implemented CH-MOEA with Genetic Programming (CH-MOGP).

P. Wang, M. Emmerich, R. Li, K. Tang, T. Baeck and X. Yao, "Convex Hull-Based Multi-objective Genetic Programming for Maximizing Receiver Operating Characteristic Performance," IEEE Transactions on Evolutionary Computation, 19(2): 188-200, April 2015.

- Empirical studies
 - Which MOEA framework performs the best for our problem?
 - Is CH-MOGP competitive in comparison to non-evolutionary methods?
- Compared methods
 - NSGA-II
 - MOEA/D
 - SMS-EMOA (an indicator based MOEA)
 - C4.5
 - PRIE ([Fawcett, 2008], a state-of-the-art heuristic approach for ROCCH maximization)
 - Naïve Bayes

All evolutionary approaches adopt the same base learner and reproduction operator

• CH-MOGP outperformed state-of-the-art MOEAs

Dataset	CH-MOGP	SMS-EMOA	NSGA-II	MOEA/D	Dataset	CH-MOGP	SMS-EMOA	NSGA-II	MOEA/D
australian	91.49 ± 2.72	91.67 ± 2.48	91.16 ± 2.41	90.29 ± 2.75	bands	77.00 ± 4.05	76.38 ± 4.09	75.54 ± 3.56	71.85 ± 3.82
bcw	97.94 ± 1.20	97.73 ± 1.56	97.84 ± 1.41	97.48 ± 1.48	crx	91.30 ± 2.45	91.16 ± 2.33	91.14 ± 2.36	89.88 ± 2.51
german	73.10 ± 3.24	73.32 ± 3.33	72.39 ± 3.07	71.45 ± 2.85	house-votes	97.94 ± 1.56	97.69 ± 1.59	97.74 ± 1.71	97.15 ± 1.75
ionosphere	91.07 ± 4.95	90.51 ± 4.52	90.45 ± 4.53	89.89 ± 4.83	kr-vs-kp	98.40 ± 0.89	98.63 ± 0.75	98.39 ± 0.79	96.67 ± 1.43
mammographic	89.75 ± 2.01	89.48 ± 1.94	89.41 ± 1.87	87.50 ± 2.23	monks-1	99.70 ± 1.68	97.62 ± 3.71	99.62 ± 1.35	96.51 ± 5.69
monks-2	91.05 ± 8.00	89.28 ± 5.58	90.53 ± 5.19	73.26 ± 9.14	monks-3	99.81 ± 0.43	99.74 ± 0.45	99.45 ± 2.87	99.07 ± 0.88
parkinsons	86.79 ± 6.86	85.11 ± 6.68	84.90 ± 7.54	83.94 ± 6.72	pima	80.08 ± 3.38	79.85 ± 3.38	79.29 ± 3.70	76.93 ± 3.10
sonar	79.42 ± 5.87	78.04 ± 5.91	77.79 ± 7.34	75.75 ± 5.66	spect	77.38 ± 7.36	76.27 ± 7.14	76.91 ± 8.46	74.88 ± 6.43
tic-tac-toe	83.40 ± 10.4	79.56 ± 11.1	79.07 ± 13.4	70.85 ± 10.4	transfusion	71.62 ± 4.62	71.48 ± 4.47	71.49 ± 4.84	68.77 ± 4.63
wdbc	96.78 ± 1.92	96.49 ± 2.25	96.70 ± 2.11	95.90 ± 2.19					

Performance on Ninteen UCI Datasets

Performance on Three Large-scaled UCI Datasets

Dataset	CH-MOGP	SMS-EMOA	NSGA-II	MOEA/D	Dataset	CH-MOGP	SMS-EMOA	NSGA-II	MOEA/D
adult skin	84.58 ± 1.40 97.10 ± 1.11	$\begin{array}{r} 82.53 \pm 2.15 \\ 95.46 \pm 1.85 \end{array}$	$\begin{array}{c} 84.01 \pm 1.38 \\ 96.57 \pm 1.25 \end{array}$	$\begin{array}{c} 77.04 \pm 2.54 \\ 93.20 \pm 2.37 \end{array}$	magic04	83.02 ± 1.04	81.76 ± 1.57	82.01 ± 1.19	76.39 ± 3.07

Results for 19 UCI Dataset

Results for 3 Large-Scaled UCI Dataset

Ratio	$\frac{1}{15}$	$\frac{1}{10}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	1	Ratio	$\frac{1}{15}$	$\frac{1}{10}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	1
NSGA-II	4-15-0	4-15-0	2-17-0	4-15-0	5-14-0	5-14-0	4-15-0	NSGA-II	0-3-0	1-2-0	1-2-0	1-2-0	2-1-0	2-1-0	2-1-0
SMS-EMOA	11-8-0	11-8-0	6-13-0	5-14-0	4-15-0	4-15-0	5-14-0	SMS-EMOA	3-0-0	3-0-0	3-0-0	3-0-0	3-0-0	3-0-0	3-0-0
MOEA/D	19-0-0	19-0-0	19-0-0	19-0-0	19-0-0	19-0-0	19-0-0	MOEA/D	3-0-0	3-0-0	3-0-0	3-0-0	3-0-0	3-0-0	3-0-0

Dataset	CH-MOGP	C4.5	NB	PRIE
australian	91.97 ± 2.53	85.52 ± 4.05	89.47 ± 2.78	91.75 ± 2.36
bands	78.50 ± 3.56	74.56 ± 4.59	73.91 ± 4.68	76.07 ± 4.81
bcw	98.17 ± 1.06	95.05 ± 2.55	98.92 ± 0.62	98.16 ± 1.09
CTX	91.82 ± 2.27	85.51 ± 3.94	87.88 ± 3.16	90.65 ± 2.77
german	74.27 ± 2.79	65.36 ± 4.74	78.42 ± 2.94	75.95 ± 3.25
house-votes	98.23 ± 1.26	96.35 ± 2.04	98.05 ± 1.04	97.80 ± 1.49
ionosphere	92.42 ± 3.66	88.20 ± 5.65	93.57 ± 3.18	93.68 ± 4.23
kr-vs-kp	99.40 ± 0.26	99.71 ± 0.23	93.21 ± 1.00	98.26 ± 0.44
mammographic	90.20 ± 1.76	87.66 ± 2.21	89.77 ± 1.96	89.70 ± 2.02
monks-1	100.0 ± 0.00	77.13 ± 6.90	73.18 ± 4.58	70.93 ± 5.59
monks-2	95.68 ± 4.61	94.17 ± 5.93	52.38 ± 7.04	51.25 ± 6.16
Dataset	CH-MOGP	C4.5	NB	PRIE
monks-3	100.0 ± 0.00	100.0 ± 0.00	95.94 ± 2.17	99.60 ± 0.27
monks-3 parkinsons	$\begin{array}{c} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \end{array}$	95.94 ± 2.17 85.91 ± 6.11	99.60 \pm 0.27 88.24 \pm 5.83
monks-3 parkinsons pima	$\begin{array}{c} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \end{array}$	95.94 ± 2.17 85.91 ± 6.11 81.40 ± 3.01	$\begin{array}{c} 99.60 \pm 0.27 \\ 88.24 \pm 5.83 \\ 79.58 \pm 2.92 \end{array}$
monks-3 parkinsons pima sonar	$\begin{array}{l} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \\ 81.44 \pm 5.15 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \\ 73.85 \pm 7.84 \end{array}$	95.94 ± 2.17 85.91 ± 6.11 81.40 ± 3.01 80.12 ± 7.03	$\begin{array}{c} 99.60 \pm 0.27 \\ 88.24 \pm 5.83 \\ 79.58 \pm 2.92 \\ 69.92 \pm 8.64 \end{array}$
monks-3 parkinsons pima sonar spect	$\begin{array}{l} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \\ 81.44 \pm 5.15 \\ 78.56 \pm 7.44 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \\ 73.85 \pm 7.84 \\ 76.88 \pm 8.91 \end{array}$	$\begin{array}{r} 95.94 \pm 2.17 \\ 85.91 \pm 6.11 \\ 81.40 \pm 3.01 \\ 80.12 \pm 7.03 \\ 84.09 \pm 6.03 \end{array}$	$\begin{array}{c} 99.60 \pm 0.27 \\ 88.24 \pm 5.83 \\ 79.58 \pm 2.92 \\ 69.92 \pm 8.64 \\ 83.51 \pm 7.01 \end{array}$
monks-3 parkinsons pima sonar spect tic-tac-toe	$\begin{array}{l} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \\ 81.44 \pm 5.15 \\ 78.56 \pm 7.44 \\ 90.07 \pm 8.88 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \\ 73.85 \pm 7.84 \\ 76.88 \pm 8.91 \\ 84.91 \pm 13.9 \end{array}$	$\begin{array}{r} 95.94 \pm 2.17 \\ 85.91 \pm 6.11 \\ 81.40 \pm 3.01 \\ 80.12 \pm 7.03 \\ 84.09 \pm 6.03 \\ 61.50 \pm 14.7 \end{array}$	$\begin{array}{c} 99.60 \pm 0.27 \\ 88.24 \pm 5.83 \\ 79.58 \pm 2.92 \\ 69.92 \pm 8.64 \\ 83.51 \pm 7.01 \\ 70.41 \pm 12.5 \end{array}$
monks-3 parkinsons pima sonar spect tic-tac-toe transfusion	$\begin{array}{c} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \\ 81.44 \pm 5.15 \\ 78.56 \pm 7.44 \\ 90.07 \pm 8.88 \\ 72.19 \pm 4.89 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \\ 73.85 \pm 7.84 \\ 76.88 \pm 8.91 \\ 84.91 \pm 13.9 \\ 71.08 \pm 5.08 \end{array}$	$\begin{array}{r} 95.94 \pm 2.17 \\ 85.91 \pm 6.11 \\ 81.40 \pm 3.01 \\ 80.12 \pm 7.03 \\ 84.09 \pm 6.03 \\ 61.50 \pm 14.7 \\ 70.93 \pm 4.94 \end{array}$	$\begin{array}{c} 99.60 \pm 0.27 \\ 88.24 \pm 5.83 \\ 79.58 \pm 2.92 \\ 69.92 \pm 8.64 \\ 83.51 \pm 7.01 \\ 70.41 \pm 12.5 \\ 70.87 \pm 5.39 \end{array}$
monks-3 parkinsons pima sonar spect tic-tac-toe transfusion wdbc	$\begin{array}{c} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \\ 81.44 \pm 5.15 \\ 78.56 \pm 7.44 \\ 90.07 \pm 8.88 \\ 72.19 \pm 4.89 \\ 97.32 \pm 1.40 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \\ 73.85 \pm 7.84 \\ 76.88 \pm 8.91 \\ 84.91 \pm 13.9 \\ 71.08 \pm 5.08 \\ 92.74 \pm 3.16 \end{array}$	$\begin{array}{c} 95.94 \pm 2.17\\ 85.91 \pm 6.11\\ 81.40 \pm 3.01\\ 80.12 \pm 7.03\\ 84.09 \pm 6.03\\ 61.50 \pm 14.7\\ 70.93 \pm 4.94\\ 98.14 \pm 1.33\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
monks-3 parkinsons pima sonar spect tic-tac-toe transfusion wdbc adult	$\begin{array}{c} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \\ 81.44 \pm 5.15 \\ 78.56 \pm 7.44 \\ 90.07 \pm 8.88 \\ 72.19 \pm 4.89 \\ 97.32 \pm 1.40 \\ 88.97 \pm 0.37 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \\ 73.85 \pm 7.84 \\ 76.88 \pm 8.91 \\ 84.91 \pm 13.9 \\ 71.08 \pm 5.08 \\ 92.74 \pm 3.16 \\ 88.89 \pm 0.53 \end{array}$	$\begin{array}{c} 95.94 \pm 2.17\\ 85.91 \pm 6.11\\ 81.40 \pm 3.01\\ 80.12 \pm 7.03\\ 84.09 \pm 6.03\\ 61.50 \pm 14.7\\ 70.93 \pm 4.94\\ 98.14 \pm 1.33\\ 85.27 \pm 0.37\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
monks-3 parkinsons pima sonar spect tic-tac-toe transfusion wdbc adult magic04	$\begin{array}{c} 100.0 \pm 0.00 \\ 86.10 \pm 6.66 \\ 80.74 \pm 3.12 \\ 81.44 \pm 5.15 \\ 78.56 \pm 7.44 \\ 90.07 \pm 8.88 \\ 72.19 \pm 4.89 \\ 97.32 \pm 1.40 \\ 88.97 \pm 0.37 \\ 87.16 \pm 0.74 \end{array}$	$\begin{array}{c} 100.0 \pm 0.00 \\ 78.91 \pm 9.76 \\ 75.23 \pm 4.93 \\ 73.85 \pm 7.84 \\ 76.88 \pm 8.91 \\ 84.91 \pm 13.9 \\ 71.08 \pm 5.08 \\ 92.74 \pm 3.16 \\ 88.89 \pm 0.53 \\ 86.76 \pm 0.83 \end{array}$	$\begin{array}{c} 95.94 \pm 2.17\\ 85.91 \pm 6.11\\ 81.40 \pm 3.01\\ 80.12 \pm 7.03\\ 84.09 \pm 6.03\\ 61.50 \pm 14.7\\ 70.93 \pm 4.94\\ 98.14 \pm 1.33\\ 85.27 \pm 0.37\\ 75.70 \pm 0.74\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CH-MOEA outperformed other state-of-the-art methods in terms of solution quality

Evolutionary Reinforcement Learning

What is reinforcement learning

learning a strategy to interact with the environment for maximizing the long-term reward

Compare RL with SL

SL searches for a model RL searches for the right output and a model

Hardness of RL

general binary space problem $\max_{x \in \{0,1\}^n} f(x)$

solving the optimal policy is NP-hard!

Value-based methods

dynamic programming

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) \left(R(s, a, s') + V^{\pi}(s') \right)$$
$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) \left(R(s, a, s') + V^{\pi}(s') \right)$$

Value-based methods

overall idea:

how is the current policy policy evaluation improve the current policy policy improvement

policy iteration:

policy evaluation: backward calculation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V^{\pi}(s') \right)$$

policy improvement: from the Bellman optimality equation

$$V(s) \leftarrow \max_{a} Q^{\pi}(s, a)$$

Value-based methods

policy degradation in value-based methods

[Bartlett. An Introduction to Reinforcement Learning Theory: Value Function Methods. Advanced Lectures on Machine Learning, LNAI 2600]

optimal policy: red V*(2) > V*(1) > 0

let $\hat{V}(s) = w\phi(s)$, to ensure $\hat{V}(2) > \hat{V}(1)$, w < 0as value function based method minimizes $\|\hat{V} - V^*\|$ results in w > 0

sub-optimal policy, better value \neq better policy

Policy search

parameterized policy

 $\pi(a|s) = P(a|s,\theta)$

Gibbs policy (logistic regression)

$$\pi_{\theta}(i|s) = \frac{\exp(\theta_i^{\top}\phi(s))}{\sum_j \exp(\theta_j^{\top}\phi(s))}$$

Gaussian policy (continuous !)

$$\pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\theta^{\top}s - a)^2}{\sigma^2}\right)$$

Policy search

direct objective functions

episodic environments: over all trajectories

$$J(\theta) = \int_{Tra} p_{\theta}(\tau) R(\tau) \, \mathrm{d}\tau$$

where $p_{\theta}(\tau) = p(s_0) \prod_{i=1}^{T} p(s_i | a_i, s_{i-1}) \pi_{\theta}(a_i | s_{i-1})$
is the probability of generating the trajectory

continuing environments: over stationary distribution

$$J(\theta) = \int_{S} d^{\pi_{\theta}}(s) \int_{A} \pi_{\theta}(a|s) R(s,a) \, \mathrm{d}s \, \mathrm{d}a$$

 $d^{\pi_{\theta}}$ is the stationary distribution of the process

Policy search by gradient: policy gradient

$$J(\theta) = \int_{Tra} p_{\theta}(\tau) R(\tau) \, \mathrm{d}\tau$$

logarithm trick $\nabla_{\theta} p_{\theta} = p_{\theta} \nabla_{\theta} \log p_{\theta}$
as $p_{\theta}(\tau) = p(s_0) \prod_{i=1}^{T} p(s_i | a_i, s_{i-1}) \pi_{\theta}(a_i | s_{i-1})$
 $\nabla_{\theta} \log p_{\theta}(\tau) = \sum_{i=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_i | s_{i-1}) + \mathrm{const}$
gradient: $\nabla_{\theta} J(\theta) = \int_{Tra} p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) R(\tau) \, \mathrm{d}\tau$
 $= E[\sum_{i=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) R(s_i, a_i)]$

use samples to estimate the gradient (unbiased estimation)

Policy search v.s. value-based methods

Policy search advantages:

effective in high-dimensional and continuous action space learn stochastic policies directly avoid policy degradation

disadvantages:

converge only to a local optimum high variance

Policy gradient: variance control

actor-critic

 $abla_{\theta} J(\theta) \approx E[
abla_{\theta} \log \pi_{\theta}(a|s)Q_w(s,a)]$ if w is a minimizer of $E[(Q^{\pi_{\theta}}(s,a) - Q_w(s,a))^2]$ Learn policy (actor) and Q-value (critic) simultaneously

baseline

 $\begin{aligned} \nabla_{\theta} J(\theta) &= E[\nabla_{\theta} \log \pi_{\theta}(a|s)(Q^{\pi}(s,a) - b(s))] \\ \text{advantage function: } A^{\pi}(s,a) &= Q^{\pi}(s,a) - V^{\pi}(s) \\ \nabla_{\theta} J(\theta) &= E[\nabla_{\theta} \log \pi_{\theta}(a|s)A^{\pi}(s,a)] \\ \text{learn policy, Q and V simultaneously} \end{aligned}$

Policy gradient: other gradients

nature policy gradient

[Kakade. A Natural Policy Gradient. NIPS'01]

functional policy gradient

$$\pi_{\Psi}(a|\mathbf{s}) = \frac{\exp(\Psi(\mathbf{s},a))}{\sum_{a'} \exp(\Psi(\mathbf{s},a'))}$$
$$\Psi_t = \sum_{i=1}^t h_t$$

[Yu et al. Boosting nonparametric policies. AAMAS'16]

parameter-level exploration

 $heta \sim \mathcal{N}$

[Sehnke et al. Parameter-exploring policy gradients. Neural Networks'10]

asynchronous gradient update

[Mnih et al. Asynchronous Methods for Deep Reinforcement Learning . ICML'16]

Optimization difficulty

the non-convexity

 $J(\theta) = \int_{Tra} p_{\theta}(\tau) R(\tau) \, \mathrm{d}\tau$ where $p_{\theta}(\tau) = p(s_0) \prod p(s_i | a_i, s_{i-1}) \pi_{\theta}(a_i | s_{i-1})$ i=1 $\pi_{\theta}(i|s) = \frac{\exp(f_{\theta}(i;\phi(s)))}{\sum_{i} \exp(f_{\theta}(j;\phi(s)))}$ $f_{\theta} =$

too many local minima

EARL - EA for RL

value-function representation

policy representation

Parameter search by EAs

Does not utilize problem structure

- 1. NN parameters -> NN structure
- 2. Parameters -> dynamic programming

NEAT+Q

generations

evaluation

1: // S: set of all states, A: set of all actions, c: output scale, p: population size 2: $//m_n$: node mutation rate, m_l : link mutation rate, q: number of generations 3: // e: number of episodes per generation, α : learning rate, γ : discount factor 4: $//\lambda$: eligibility decay rate, ϵ_{td} : exploration rate 5: 6: $P[] \leftarrow \text{INIT-POPULATION}(S, A, p)$ // create new population P with random networks 7: for $i \leftarrow 1$ to q do 8: for $j \leftarrow 1$ to e do $N, s, s' \leftarrow \text{RANDOM}(P[]), \text{ null, INIT-STATE}(S)$ // select a network randomly 9: repeat 10: $Q[] \leftarrow c \times \text{EVAL-NET}(N, s')$ // compute value estimates for current state 11: 12:with-prob (ϵ_{td}) $a' \leftarrow \text{RANDOM}(A)$ // select random exploratory action 13:else $a' \leftarrow \operatorname{argmax}_k Q[k]$ // or select greedy action 14: if $s \neq$ null then 15:with TD BACKPROP $(N, s, a, (r + \gamma \max_k Q[k])/c, \alpha, \gamma, \lambda)$ // adjust weights toward target 16:17: $s, a \leftarrow s', a'$ 18: $r, s' \leftarrow \text{TAKE-ACTION}(a')$ // take action and transition to new state 19: $N.fitness \leftarrow N.fitness + r$ // update total reward accrued by N 20:**until** TERMINAL-STATE?(s)21:22: $N.episodes \leftarrow N.episodes + 1$ // update total number of episodes for N $P'[] \leftarrow$ new array of size p // new array will store next generation 23:for $j \leftarrow 1$ to p do 24: $P'[j] \leftarrow \text{BREED-NET}(P[])$ // make a new network based on fit parents in P 25:reproduction with-probability m_n : ADD-NODE-MUTATION(P'[j]) // add a node to new network26:with-probability m_l : ADD-LINK-MUTATION(P'[j]) // add a link to new network 27: $P[] \leftarrow P'[]$ 28:

Shimon Whiteson and Peter Stone. Evolutionary Function Approximation for Reinforcement Learning. Journal of Machine Learning Research, 7:877–917, 2006

Some comparison

on Atari games

freeway

	Freeway	Asterix
$\mathbf{Sarsa}(\lambda)$ - \mathbf{BASS}	0	402
$\mathbf{Sarsa}(\lambda)$ -DISCO	0	301
$\mathbf{Sarsa}(\lambda)$ - \mathbf{RAM}	0	545
Random	0	156
HyperNEAT-GGP (Average)	27.4	870
HyperNEAT-GGP (Best)	29	1000

Matthew J. Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone:HyperNEAT-GGP: a hyperNEAT-based atari general game player. GECCO 2012: 217–224

Batch sampling Online update

batch mode:

sequential mode:

Yi-Qi Hu, Hong Qian, and Yang Yu. Sequential classification-based optimization for direct policy search. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'17), San Francisco, CA, 2017, pp.2029–2035.

Batch sampling Online update

Task name	d _{State}	#Actions	NN nodes	#Weights	Horizon
Acrobot	6	1	5, 3	48	2,000
MountainCar	2	1	5	15	10,000
HalfCheetah	17	6	10	230	10,000
Humanoid	376	17	25	9825	50,000
Swimmer	8	2	5, 3	61	10,000
Ant	111	8	15	1785	10,000
Hopper	11	3	9, 5	159	10,000
LunarLander	8	1	5, 3	58	10,000

Yi-Qi Hu, Hong Qian, and Yang Yu. Sequential classification-based optimization for direct policy search. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'17), San Francisco, CA, 2017, pp.2029–2035.

Parallel: evolutionary strategies

centralized

- 1: **Input:** Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: for $t = 0, 1, 2, \dots$ do
- 3: Sample $\epsilon_1, \ldots \epsilon_n \sim \mathcal{N}(0, I)$
- 4: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for i = 1, ..., n
- 5: Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^n F_i \epsilon_i$
- 6: **end for**

time steps of ES to the top performance of TRPO

Environment	25%	50%	75%	100%
HalfCheetah Hopper InvertedDoublePendulum InvertedPendulum Swimmer Walker2d	$\begin{array}{c} 0.15 \\ 0.53 \\ 0.46 \\ 0.28 \\ 0.56 \\ 0.41 \end{array}$	0.49 3.64 0.48 0.52 0.47 5.69	$\begin{array}{c} 0.42 \\ 6.05 \\ 0.49 \\ 0.78 \\ 0.53 \\ 8.02 \end{array}$	0.58 6.94 1.23 0.88 0.30 7.88

parallel

- 1: **Input:** Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: **Initialize:** *n* workers with known random seeds, and initial parameters θ_0
- 3: for $t = 0, 1, 2, \dots$ do
- 4: for each worker $i = 1, \ldots, n$ do
- 5: Sample $\epsilon_i \sim \mathcal{N}(0, I)$
- 6: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$
- 7: end for
- 8: Send all scalar returns F_i from each worker to every other worker
- 9: for each worker $i = 1, \ldots, n$ do
- 10: Reconstruct all perturbations ϵ_j for j = 1, ..., n
- 11: Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{j=1}^n F_j \epsilon_j$
- 12: **end for**
- 13: end for

More issues to be solved

Noisy evaluation: too many repetitions

Large model: too large search space

Long-term reward: too complex objective function

Thanks for your time!

Questions/comments?