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What is Bilevel Optimization?

» Two levels of optimization tasks

» Upper level: (x,,x)
» Lower level: (x), x, is fixed

» An upper level feasible solution must be an lower

level solution: (x,, x,*(x,))

Minex, x,) F(xu,x1),

st x; € argminx,) {

Min is default, can be
max in any of the levels

(3w, x1) } ’

g(xu,XI) > 0’ h(x’u)xl) =0

G(x4,%x;) > 0,H(x,,%x;) = 0,
(xu)min <xy < (xu)mazy (xl)min <x; < (xl)maz
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Lower Level Function
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An lllustration

Lower level solution x, can be a singleton or multi-valued

Upper level solution corresponds to the best combination of lower
level optimum and upper level values

Uncertainty about which point the lower level decision maker chooses
makes the bilevel formulation ill-defined
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Multi-level Optimization

* Multi-level (L levels) optimization
» Two or more levels of optimization
* Nested structure

Min F(x4,X5,...X.)
s.t
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Origin of Bilevel Programming

An Extension of Mathematical Programming

« All optimization problems are special cases of bilevel
programming
—Bracken and McGill (1973)

Stackelberg Games

* Bilevel programs commonly appear in game theory
when there is a leader and follower

—Stackelberg (1952)
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Stackelberg Games

Two Player Game

« Leader makes the first move

« Follower reacts rationally and then makes its move
« Leader has the first mover’s advantage

« Problem is non-symmetric

EEEN

« Hierarchical decision making

« Consider a leader dictating selling price and supply

« Customers respond rationally to the leader’s decision

« Leader needs to anticipate this response to maximize profit
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Topic Models
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Fig. 2: Topic: Optimality conditions.
More than 10% share
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Fig. 3: Topic: Classical game theory.
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Fig. 4: Topic: Network design.
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Topic Models
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Fig. 5: Topic: Supply chain applications.

ergmeermg oo
etho

obtamophmlze s
h|erarch|cal
designs,, ; -
structural
product
performance
optimum

struct
\
\

Comp:

Fig. 6: Topic: Optimal design applications.
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Fig. 8: Topic: Telecommunication applications.
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Topic Models
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Fig. 10: Topic: Computer architecture and circuit design.

Around 5% share
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Fig. 11: Topic: Hierarchical decision making applications.
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Fig. 12: Topic: Environment applications.
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Fig. 13: Topic: Facility location applications.
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Fig. 14: Topic: Vehicle Routing applications.

Less than 5% share
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Fig. 15: Topic: Machine learning applications.
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A Mathematical Bilevel Optimization

Problem

Min
)
Such that

v

Not to be Confused with Multi-
Objective Optimization

Pareto-optimal Set

XU=X, X=Y — y (Decision Space)
Such that 1
. . x+2y<13,1=sx=< m _y
maximize y y=x, 9 Bilevel Optimum
» Bold lineis F f RS
solution set for . AL x+y=<8 Y=
LL v x+4y=8
Xx+2y=<13
» Min 3y+x for e «
bold line is R Boidting:~Induced;Set VIIN x+3y, S.T. y2y' & teasible -> (X,y)"=(1,Y)
solution (6,2) ~W(26) - Bilevel Solution PO set very different from the Bilevel solution
N\ Xy
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Multi-level Optimization: A Generic
Optimization Problem

OMulti-level (L levels) optimization
B Two (L=2) or more levels of optimization
M |[deally, nested optimization

OUsual single, multi- and many-objective
optimization problems
B Special cases (L=1) of L-level optimization

B Number of objectives can be more than one at each
level

OBilevel: A more generic optimization
concept than single-level optimization
ot ,7). >
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Single and Bi-objective Treatments

ODoes not help solve Bilevel problem by
M Ignoring of lower level or
B Treating as a bi-objective optimization
CONeed to look at differently
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Similarities with Constrained
Single-Objective Optimization with
Equality Constraints

OA single-objective Minimize f(x)
optimization problem: Subject to hy(x) =0, Vk
OEquality constraint: z; = ¥ (x\71)

M Usually, a root-finding problem
M A solution x is feasible, only if it satisfies all constraints

O In EBO, LL problem is an optimization problem

W A solution (x,,x,) is not feasible, unless x, is a solution to the LL
optimization problem

. x ﬁ %:oru CO” )
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Some Applications

Bilevel Problems in Practice

» Often appears from functional feasibility
» Stability, equilibrium, solution to a set of PDEs
» Ideally, lower level task must implement above
» Dual problem solving in theoretical optimization
» Lower level is bypassed by approximation or by using
direct simplified solution principles
» Due to lack of suitable BO techniques
» Stackelberg games: Leader-follower
» Leader must be restricted to follower’ s decisions

» Follower must respect leader’ s decisions

2o XCDD
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Structural Optimization
OUpper level: Topology
OLower level: Sizes and coordinates

Gooeration 111 Weight 47,986 Avecage Weight 39,564 Grade 52.868 Geoeration 133 Weight 48.19 Average Weight 53219 Urade 48,636

)
198 Weight 45379 Average Wolght 4747 Urade 45379 Welght 14077 Average Wolght 46.53 Ueade 44.071

Does it make sense to know cross-section sizes
¥, before settling down on topology?

TEACON 7/\)w\u/;\/;\ Ankur Sinha and Kalyanmoy Deitr)1




Toll Setting Problem

o Authority's (Upper level) problem:

« Authority responsible for highway system
wants to maximize its revenues earned from
toll

. The authority has to solve the highway users
optimization problem for all possible tolls
o Highway users' (Lower level) problem:
. For any toll chosen by the authority, highway
users try to minimize their own travel costs
« A high toll will deter users to take the
highway, lowering the revenues
Does it make sense to choose or not
to choose a toll high-way before
knowing the toll amount?

%:oru CO H )

“Brotcorne et al. (2001)
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Seller-Buyer
Strategies

= An owner (UL) of a company dictates
the selling price and supply. She/he
wants to maximize profit

= Buyers (LL) look at the product quality,
pricing and various other options

——
available to maximize their utility I
7©<

» Mixed integer programs on similar lines
have been formulated by Heliporn et ©
al. (2010)
Does it make sense to buy a product
and its utility without knowing the sale

price? Heilporn et al. (2010)

we COMD
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Stackelberg Competition

Competition between a leader and a
follower firm (Duopoly)

Leader solves the following optimization
problem to maximize its profit

max I = P(q, 95)q — C(a)
Q.95
st g7 € argmax{lly = P(Q)as — Clgs)},
a If the leader and follower have
a+ar>Q, similar functions, leader always
@,97,Q >0, makes a higher profit.
where @ is the quantity demanded, P(q;,qy) is the price - First mover’s advantage
of the goods sold, and C(-) is the cost of production of
the respective firm. The variables in this model are the
production levels of each firm ¢;, g5 and demand Q.

Z.. CODM

Can be extended to multiple
leaders and multiple followers
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Taxation Strategy _ g

* Recently, there had been a I I I I
controversy in Finland for gold e

mining in the Kuusamo region Leader: Government Maximize
in Finland revenue from taxes, Minimize
« The region is a famous tourist Folution I
resort endowed with immense
natural beauty
» For any taxation strategy by
the government (UL), the
mining company (LL)
optimizes its own profits
Does it make sense for the miners to
venture into it before knowing the
% governmental tax policies?

BEACON _ ,’L/’\)w >\/\

Follower: Mining Company
Maximize Profit

Sinha, et al. (2013)
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Defense Applications

Robust Design
Hub-and Sp0ke Networks Defender-Attacker-Defender
Interdiction Problem Protection Problem Three levels
Attacker-Defender Defender-Attacker
Defender
Two levels Two levels Take interdiction problem into
account during design phase
Attacker Defender
Maximize operating costs Minimize the maximum Attacker )
post attack damage by fortification Maximize operating costs
post attack
Defender Attacker
Minimize operating cost Maximize damage DgfgnQer i
Minimize operating cost

Nine key substations out of 55,000 substations can
result in a coast to coast blackout in US

%:oru CO ”
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Parameter Tuning

Upper Level: Find optimal Upper Level Optimization
parameters that maximize (Algonthmiparameters; p)

algorithm performance over

L o
conditions

a number of initial

Lower Level Optimization
(Problem variables, x)

Lower Level: Run the

optimization algorithm to
find optimized solution x ﬁ (x)

Researchers commonly rely on
grid search or random search

Does it make sense to conclude an
algorithm’s performance without Il (2008), 3inha ef AniaQ14)n
spelling out algorithm parameters? Ankur Sinha and Kalyanmoy Deb

Agri-business Management

(gger Level

Regulator

Objective 1: Minimize Pollution (Fertilizer)
Objective 2: Maximize Revenues

Lower Level
Multiple Farms

@ective: Maximize Individual Profit

[ Decision Variables: Taxation, inputs, outputs J

Contains multiple lower level
optimization problems

Does it make sense to decide on
fertilizer usage before knowing the tax Whittaker f al, (2018),,

H Ankur Sinha and Kalyanmoy Deb
on it? yanmey

Inverse Optimal Control

* While performing actions humans
optimize certain unknown  cost
function

* It might be interesting to have an idea
of the cost function that might help in
designing efficient humanoids

» Given the data corresponding to the

motion identifying the reward or cost

function becomes an inverse problem
Mombaur et al. (2010), Suryan et al. (2016)
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Min-Max Problems

O Typical min-max problem
MinxMaxy f(x,y),
Subject to (x,y) € (X,Y).
[0 Can be solved as a Bilevel problem
Minxy f(x,),
Subject to y = argmaxy {f(x,y), (x,y) € (X,Y)}.

[0 Co-evolutionary problems are ideal candidates for
Bilevel optimization

[ ]
g | 4 CEC-2017, San Sebastian, Spain
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Special Cases

« Linear bilevel problems
« Reducible to a mixed integer linear program

. Bilevel problems with combinatorial variables at
upper level and linear program at lower level
« Reducible to a mixed integer linear program

. Bilevel problems with combinatorial variables at both
levels
. Very hard to solve

. Bilevel problems with similar objectives at both levels
« Reduces to minmax or minmin (min) problems
. Ideas of duality can be utilized
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Solution Methodologies

+ Single-level reduction using KKT
- Bialas and Karwan (1984), Bard and Falk (1982), Bard
and Moore (1990)
+ Descent methods
- Savard and Gauvin (1994), Vicente et al. (1994)
* Penalty function methods
- Aiyoshi and Shimizu (1981, 1984), Ishijuka and Aiyoshi
(1992), White and Anandalingam (1993)
+ Trust region methods
- Colson et al. (2005)
+ Using lower level optimal value function
- Mitsos (2010)
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Properties of Bilevel Problems

« Bilevel problems are typically non-convex,
disconnected and strongly NP-hard

« Solving an optimization problem produces one or
more feasible solutions

« Multiple global solutions at lower level can induce
additional challenges

« Two levels can be cooperating or conflicting

CEC-2017, San Sebastian, Spain
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Why Use Evolutionary Algorithms?

First, no implementable mathematical optimality conditions exist
(Dempe, Dutta, Mordokhovich, 2007)

* LLproblem is replaced with KKT conditions and constraint
qualification (CQ) conditions of LL

* UL problem requires KKT of LL-KKT conditions, but handling
LL-CQ conditions in UL-KKT becomes difficult

* Involves second-order differentials
Moreover, classical numerical optimization methods require

various simplifying assumptions like continuity, differentiability
and convexity

. Most real-world applications do not follow these assumptions

EA’s flexible operators, direct use of objectives, and population

—approach should help solve BO problems better

s o o
,1@5 < four d'") g ¢ CEC-2017, San Sebastian, Spain
& CBEACON ) \ Ankur Sinha and Kalyanmoy Deb

Niche of Evolutionary Methods (cont.)

[0 Usually, LL solutions are multi-modal
[ Usually, BO problems are multi-objective BO

Importantly, classical or theoretical optimization
literature do not provide us with good methods

and applicable results . et

modeling etc.

0 Other complexities (robustness, parallel implementation,
fixed budget) can be handled efficiently

EAs for Bilevel Optimization

* Most of the EAs for bilevel optimization have been nested in

nature

- Using one algorithm for upper level and solving the
lower level optimization problem for every upper level
point

- Not very interesting!

- Expensive even for small instances!

- Non-scalable!

CEC-2017, San Sebastian, Spain
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Bilevel Optimization using EAs

EA at upper level and exact method at lower level

* Mathieu et al. (1994): LP for lower level and GA for upper level

* Yin (2000): Frank-Wolfe Algorithm for lower level and EA for
upper level

EA at both upper and lower level

« Lietal (2006): Particle Swarm Optimization at both levels
« Angelo et al. (2013): Differential Evolution at both levels

« Sinha et al. (2014): Genetic Algorithm at both levels

EA used after single-level reduction

* EAresearchers have also tried replacing the lower level problems
using KKT (Hejazi et al. (2002), Wang et al. (2008), Li et al.
(2007))

CEC-2017, San Sebastian, Spain
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Bilevel Optimization using EAs

Approximating lower level level rational response

« Sinha, Malo, Deb. (2013, 2014, 2017): Iteratively approximates
lower level optimal response with upper level decision vector
(Discussed later)

Approximating lower level optimal value function

« Sinha, Malo, Deb. (2016): Iteratively approximates lower level
optimal function value with upper level decision vector
(Discussed later)

Trust region method

« Sinha, Soun and Deb (2017)
(To be presented on June 8, 14:30-16:30, Room 8)

ﬁ %:oru CO . ” )
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Can EAs be really useful for bilevel
optimization?

» Nested approaches are certainly not the way forward
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Can EAs be really useful for bilevel
optimization?
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Can EAs be really useful for bilevel
optimization?

 ltis noteworthy that at each iteration an EA has a
population of points
» Can these population of points be put to use to
approximate certain mappings in bilevel?
» Exploiting the structure and properties of the
problem is essential!
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Approach 1
(Lower Level Reaction Set Mapping)

\IJ(Iu) ZMgmin{f(zu7zl) : gj(zu7zl) S 0).7 = 11 LR J}
x

min  F(zy, ;)
Tyt

s.t.
z; € U(zy,)
Gk‘(xuaxl) < ka: 17"'7K

Step 0: Solve the lower level problem completely for the initial population
Step 1: Use the population members to approximate the W-mapping locally
Step 2: Solve the reduced single level problem for a few iterations

Step 3: Update the local ¥-mappings and continue

Step 4: If termination criteria not met, go to Step 2

CEC-2017, San Sebastian, Spain
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Better Understanding of Bilevel
Problems

£ xPx)

F (%, W(xy) f )
Xu X

Multiple
LL solutions

‘ Xy
f *@x))

Wy ={x}
wxP)

Mapped x,* = W(x,) A

Xy F(xy W (x)) H

apped x*

Xu

Upper-level variable vector
CEC-2017, San Sebastian, Spain
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Actual W-mapping

XU Upper-level decision space

XL |

¥(d)

¥(b)

Y(a)

. ¥(c
Lower-level decision space ©

K ]
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Approximate W-mapping
Xu
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Using approximate W-mapping
Xu
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Approximation Choice

Tried different strategies for localized approximation, like,

« Linear Approximation

« Piecewise linear approximation

* Quadratic approximation
Results were favorable and similar with piecewise-linear as
well as quadratic approximation
Decided to use quadratic approximation because of its
simplicity
More complex techniques like neural networks are an
obvious extension but require large number of points
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Set-valued W becomes problematic
Xy

Dual challenge: 1. Finding the set and 2. Approximating the set

[ ]
<F, CEC-2017, San Sebastian, Spain
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Efficient Evolutionary Bilevel
Optimization Algorithm (BLEAQ)

CINested algorithm is expensive
OTrain a meta-model for x,*(x,)

OQuadratic approximation of the inducible
region
MBLEAQ constructs W (Sinha, Malo and Deb, 2013)

OJUse meta-model until possible, else solve LL
optimization problem

RS fan? [ ]
@% fe B % CEC-2017, San Sebastian, Spain
’& CBEACON ) \ Ankur Sinha and Kalyanmoy Deb

BLEAQ

lInitialization |

\ Lower Level Optimization

Terminatiol
Check

[ Produce Offspring |

= CStop D

Yes

Quadratic Approximation‘
of W Function

\ Update Population \

Accept Lower Level Variableﬁ
as Offspring
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Meta-model of W(x,) BLEAQ is being
u modified for handling

multiple LL solutions

>:Si
Approximation Hzzmudsl
Error ~
l P (xy)
VO oY < )
\y(x(lll’) ”””””””””””””””””””””” Mapped x,
wED=$Y) 77 % ””””””””””””” ‘

Upper:level variable vector Xy

\Pw(xu)
© 0
Xu Xu‘

<BEACON a IV 2 IV AU 75 N S oy o

Approach 2
(Optimal Value Function Mapping)

p(zy) = n;iln{f(zuvml) txp € Qzw)}

min  F(z,,;)
Ly T

s.t.
f(zu7xl) S @(Zu)
G (Tu, 1) <0,5=1,...,J
Gk(zquzl) S O,k = 17 e 7I(

Step 0: Solve the lower level problem completely for the initial population
Step 1: Use the population members to approximate the ¢-mapping locally
Step 2: Solve the reduced single level problem for a few iterations

Step 3: Update the local ¢-mappings and continue

Step 4: If termination criteria not met, go to Step 2
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Issues

plow) = min{f(zu,2)) : 21 € Qzu)}

min  F(z,,z;)

Ty,
s.t.
f(@u, z0) < ()
gj(zy, ) <0,5=1,...,J
Gk(Iu,xl) So,k: ].,...,K

« The approximate @-mapping makes the region highly constrained
«  With errors in estimation of ¢-mapping the reduced problem might become
infeasible
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<z COMNOX

() f(xex1) 3
¢ o)
X,
Xy U
v )

Inset 3

Inset 1 \x
* @ being a function is easier '
to approximate than W L X

Inset 2
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Issues

ple) = min{f(zu,2)) : 21 € Q(zu)}

min  F(z,,z;)

Ty
s.t.
f(@u, 20) < p(z) + €
9j(xy, ) <0,5=1,...,J
Gk(.’L‘u,.’L‘l) SO,]{)Z].,...,K

Approaches to 0 with
increase in iterations i

« The approximate @-mapping makes the region highly constrained

* With errors in estimation of ¢-mapping the reduced problem might become
infeasible

* Therefore, we relax the ¢-constraint using g;

~ [ ]
¥ i
f CBEACON CO” 4
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Comparison of Two Methods

Approach 1 Approach 2
min  F(zy,z )
fo (w21 min  F(zy,2;)
s.t. TuyTy
z; € U(zy) s.t.
G(@u, ) <0 k=1,...,K f(@u, 1) < o(z)
| Gi(u, ) <0,5=1,...,J
Gp(zy,z) <0,k=1,... K
mln F(zu7 \IJ(Z’M))
Ty
s.t.
Gr(@u, U(zy)) <0,k =1,.... K

To be solved only with respect to x,, To be solved with respect to x, and x

CEC-2017, San Sebastian, Spain
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Test Problems

» Given that a convergence proof is difficult, we
can only use test problems to justify that the

ideas work!
* First, we begin with some simple test problems

CEC-2017, San Sebastian, Spain
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Test Problems

Problem

Formulation Best Known Sol.

TP1

Mi(nim)ize F(z,y) = (z1 — 30)2 + (z2 — 20)2 — 20y, + 20y2,
z,Y,
s.t.
o d J@y) = (@1 - 91)? + (22 —92)?
"/E""%;’;‘“{ 0<y <10, i=1,2 '
21 + 222 > 30,21 + 22 < 25,22 < 15 I
!

TP2

Mi(nim)ize F(z,y) = 2z1 + 222 — 3y1 — 3y2 — 60,
@y,

st
f(z,y) = (y1 — 21 +20)? + (y2 — 22 +20)?
y€argmin{ 2, — 2y > 10,25 — 2y > 10 ,
W | —10>y;>2, i=12

1 + 2 +y1 — 2y2 < 40,
h F=0.0
0<x; <50, i=1,2. F=100.0

(]
BEACON C '\\| I
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Test Problems

Problem Formulation Best Known Sol.

TP3
Minimize F(z,y) = —(21)* = 3(22)? — dy1 + (v2)%,
Z,Y.

s.t.
f(=,y) = 2(21)? + (y1)* — 5y2
(21)? — 221 +(22)* — 291 + 92 > -3

n=2m=2 y € argmin
@ o<y, i=12

(z1)2 + 222 < 4,

0<z;, i=12

—18.6787
.0156

e}

Mi(nim)ize F(z,y) = —8z1 — 4z + 4y, — 40y2 — 4ys,
@y

st
fl@y) =214 2z2 +y1 +y2 +2u3
y2tys—y1 <1
Yy € argmin 2z; —y1 +2y2 —0.5y3 < 1 N
) 22 +2y1 —y2 — 0.5y3 < 1
0<w, ©=1,23
0<x;, i=12
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Test Problems

Problem

Formulation Best Known Sol.

TPS

Minimize F(z,g) = rt(z)z — 3y: - g2 + 0.5t(u)y,
z,Y,
s.t.
f(=,y) = 0.5t(y)hy — t(b(z))y
) 033y +y2—-2<0
Y Eamgming 4 — 0333y, - 2<0 )
0<y;, i=12

where
_(1 3 _ (-1 2 _ F=-36
h=(3 19 )b@=( 3 3 )a:,r_o.l F= 00
t(-) denotes transpose of a vector
TP6
Minimize F(z,y) = (z1 — 1)2 + 2y; — 221,
(=y)
st
f(z,y) = (201 - 4)*+
(2y2 = 1) + z1y1
n=1,m=2 4z + 5yy + 4y < 12
y € argmin{ dys —dz; —5y; < -4 3,
) dzy — 4y, +5y2 < 4
dy1 — 4z +5y2 <4 F = —1.2091
0<y;, i=12 f=16145
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Test Problems

Problem

Formulation Best Known Sol.

TP7

n=2m=2

1+eiyi+eays 7

Minimize F(z,y) = — @tuaty
(z,y)
st

y € argmin 1+z1y1f22y2
0<y; <z 1=12

(21)? + (z2)? < 100

z; —22 <0 F=-196
0<a;, i=1,2 f=196

{ Fe,y) = @ty }

TP8

n=2m=2

Mi(nim)ize F(z,y) = |22 + 222 — 3y1 — 3y2 — 60],
z,y

fl@,y) = (41 — @1 +20)2+
(y2 — z2 + 20)% }

st

y €argmin{ 2y, —a; +10<0
) 2ys — 2 +10< 0
~10<y; <20, i=1,2
1+ 22+ Y1 — 2y2 < 40 Ff0.0
0<z; <50, i=1,2 f =100.0
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Results on TPs (Cont.)

UL Func. Evals. LL Func. Evals.
p-Appx U-Appx No-Appx ¢-Appx WY-Appx No-Appx

Med Med Med Med Med Med
TP1 134 150 - 1438 2061 -
TP2 148 193 436 1498 2852 5686
TP3 187 137 633 2478 1422 6867
TP4 299 426 1755 3288 6256 19764
TPS 175 270 576 2591 2880 6558
TP6 110 94 144 1489 1155 1984
TP7 166 133 193 2171 1481 2870
TP8 212 343 403 2366 5035 7996

Most of the evaluations were spent in initialization

= COD
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Results on TPs

UL Func. Evals. LL Func. Evals.
p-Appx W-Appx No-Appx ¢-Appx W-Appx No-Appx

Med Med Med Med Med Med
TP1 134 150 - 1438 2061 -
TP2 148 193 436 1498 2852 5686
TP3 187 137 633 2478 1422 6867
TP4 299 426 1755 3288 6256 19764
TP5 175 270 576 2591 2880 6558
TP6 110 94 144 1489 1155 1984
TP7 166 133 193 2171 1481 2870
TP8 212 343 403 2366 5035 7996

Sinha ef,al.2018).

Ankur Sinha and Kalyanmoy Deb

Comparison with other approaches

21 runs

Mean Func. Evals. (UL+LL)

@-appx. W-appx. No-appx. WIL WLD

TP1 1595 2381 35896 85499 86067
TP2 1716 3284 5832 256227 171346
TP3 2902 1489 7469 92526 95851
TP4 3773 6806 21745 291817 211937
TPS 2941 3451 7559 77302 69471
TP6 1689 1162 1485 163701 65942
TP7 2126 1597 2389 1074742 944105

TP8 2699 4892 5215 213522 182121

WJL — Wang et al. (2005), WLD — Wang et al. (2011)

%ovv \CO\ 4
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Let us modify the test problems!

F"(z,y) = F(z,y) + y2 + y;
fre(@,y) = f(@,y) + (Up — Yg)?
Ypy Yq € [_Ll]

Modification leads to multiple lower level optimal
solutions for each upper level decision vector

CEC-2017, San Sebastian, Spain
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Bilevel Test Problem Construction

» Test problems with controllable difficulties are often
required to evaluate evolutionary algorithms

» Controllable and segregated difficulties help to
identify that what aspects the algorithm is unable to
handle

CEC-2017, San Sebastian, Spain
Ankur Sinha and Kalyanmoy Deb
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Results (Modified Test Problems)

21 runs
Upper Level Function Lower Level Function Both Methods Fail
Evaluations Evaluations
-Appx. ©-Appx. W-Appx. No-Appx.

Min Med Max Min  Med Max Min/Med/Max  Min/Med/Max

m-TP1
m-TP2
m-TP3
m-TP4
m-TP5
m-TP6
m-TP7
m-TP8

130 172 338 2096 2680 8629 - -
116 217 - 2574 4360 -
129 233 787 1394 3280 13031 - -
198 564 2831 1978 5792 28687 - -
160 218 953 3206 4360 17407 - -
167 174 529 2617 3520 8698 - -
114 214 473 1514 5590 11811 - -
150 466 2459 2521 6240 35993 - -

=
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Requirements

Controllable difficulty in convergence at upper and lower levels
Controllable difficulty caused by interaction of two levels

Multiple global solutions at the lower level for any given set of upper
level variables

Clear identification of relationships between lower level optimal
solutions and upper level variables

Scalability to any number of decision variables at upper and lower
levels

Constraints (preferably scalable) at upper and lower levels
Possibility to have conflict or cooperation at the two levels
The optimal solution of the bilevel optimization is known

CEC-2017, San Sebastian, Spain
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Test Problem Framework

The objectives and variables on both levels are
decomposed as follows:

F(xy,%;) = F1(%u1) + Fa(x11) + F3(Xu2, X12)

F (X, x1) = f1(Xu1, Xu2) + fo(xi1) + f3(Xu2, X12)
where

Xy = (Xul, xu2) and x; = (xll,xzz)

(Sinha, Malo and Deb, 2014)

& o %
e XEDAXIXIX
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Controlling Difficulty for Convergence

» Convergence difficulties can be induced via following

routes:
> Dedicated components: F, (upper) and f, (lower)
> Example:
F(xy,x;) = F1(%u1) + F2(x11) + F3(Xy2, X12)

Quadratic

f(xu, %) = f1(Xu1, Xu2) + fa(Xn) + f3(Xu2, X12)

Multi-modal

CEC-2017, San Sebastian, Spain
Ankur Sinha and Kalyanmoy Deb
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Roles of Variables

Panel A: Decomposition of decision variables

Upper-level variables [ Lower-level variables

| Vector I Purpose | Vector I Purpose

Xul Complexity on upper-level X1

Complexity on lower-level
Xu2 Interaction with lower-level X2

Interaction with upper-level

Panel B: Decomposition of objective functions

Upper-level objective function [ Lower-level objective function

| Component | Purpose | Component ] Purpose
F1(xu1) Difficulty in convergence f1(Xu1, Xu2) Functional dependence
Fa(x;1) Conflict / co-operation fa(x11) Difficulty in convergence
F3(xy2,%2) Difficulty in interaction f3(xu2,X12) Difficulty in interaction

S °
sl T y i CEC-2017, San Sebastian, Spain
f <BEACON ) 1] Ankur Sinha and Kalyanmoy Deb

Controlling Difficulty in Interactions

> Interaction between variables x,, and x;, could be chosen
as follows:

= Dedicated components: F5 and f,
> Example:

F(xy,%;) = F1(xu1) + Fa(x11) + F3(Xu2, X2)

r -
Z(1i2)2 + Z((Ihz)z — tanj,)?
i=1 i=1

F(Xu,X1) = f1(Xu1, Xu2) + fo(x1) + fs(xuz,xm)
Z((ﬂtz)z — tanzj,)?

i=1

CO

g

{woru
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Difficulty due to Conflict/Co-operation

» Dedicated components: F, and f, or F; and f; may be
used to induce conflict or cooperation

> Examples:

= Cooperative interaction = Improvement in lower-level improves upper-
level (e.g. F,=1,)

= Conflicting interaction = Improvement in lower-level worsens upper-level
(e.g. F, =)

= Mixed interaction is also possible

CEC-2017, San Sebastian, Spain
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Difficulty due to Constraints

Constraints are included at both levels with one or more of the
following properties:

» Constraints exist, but are not active at the optimum

» A subset of constraints, or all the constraints are active at the
optimum

» Upper level constraints are functions of only upper level variables,
and lower level constraints are functions of only lower level
variables

» Upper level constraints are functions of upper as well as lower level
variables, and lower level constraints are also functions of upper as
well as lower level variables

» Lower level constraints lead to multiple global solutions at the lower
level

» Constraints are scalable at both levels

,.
| CEC-2017, San Sebastian, Spain
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Controlled Multimodality

> Obtain multiple lower-level optima for every upper level
solution:

= Component used: f,
> Example: Multimodality at lower-level
Fir(xu1, Xu2) = (231)° + (41)% + (T02)? + (272)?

fa(xn) = (= 93 — *’tnduces multlple solutions:
fa(Xu2,X12) = ( Ty — xm) + (%2 - xn) x4 = %3,

Fi(xu1) = (z4;)? + (24,,)°
(x11) = (®]1)® + (&F,)*—— Gives best UL solution:
(X2, X12) = (Typ — -Tzz)z + (xfm - -T122) x'=x%,=0

CEC-2017, San Sebastian, Spain
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Interaction: Cooperative
Lower level: Convex (w.r.t. lower-level variables)

Problem 1 Upper level: Convex (induced space)

Upper and Lower Function Contours

P )2
Fi= ) )
— q ARV
b= ;.:1(‘rll R . ) 4
_ 2 2 — tangl e
Fy =i 1(20,0)” + 300 (2, — tana,) [ N
fi=30 (x))? B TLERRE S
‘e X)) B os
_ 4 o i )2 Sar 0 0z 0a with espect o lower vl varibles | 0403 0 07 0F
fs =201 (2 — tanzjy) Xy N(x xp)= urmk / x|y
T Lover level —— 3 R: Lowerevel
with espect 1o lower vl varibles |07 T SIT it rspect o lower level variales
a3 = (-22) X b g =D
06 2 06
L | 0 [ ]
X o T
= - IS
L INAL d :
| ~—" —4 | 1

s ooz NS 2 0 24— S
X1 Xul X1

U: Lower level function contours  P: Upper level function contours  Q: Lower level function contours

With respect to lower level variables  with respect o upper level variables  with respect to lower level variables

W 3y = (22) atoptimal lower level variables A, x,0) = @)
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Interaction: Conflicting
Lower level: Convex (w.r.t. lower-level variables)
Problem 2 Upper level: Convex (induced space)

Upper and Lower Function Contours

X
n

X1

: Lower level function contours

- - with respect to lower level variables ¢
n N{xmxuzx:mm / X

ziy €[=5,10], Vi€ {1,2,...,p} waoroogyee s o i vt

i, €[=5,1], Vie{l,2,...,r} ’

wpy €[=5,10], Vi€ {l,2,....q} —

zhy € (0,¢], ¥ ie{1,2,...,r} : O
S LA B =
SR \/4 2 0 2

X

U: Lower level function contours P Upper level function contours  Q: Lower level function contours
with respeet to lower level variables  with respect 0 upper level variables  with respect o lower level variables
Ay X ) = (222) at optimal lower level varigbles AKXy = 2072)
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Interaction: Cooperative
Lower level: Multimodality using Rastrigin’s function
Problem 3 Upper level: Convex (induced space)

Upper and Lower Function Contours

Fr=3Y7 (a10)° sl
Fy = Y00 (aiy)? N
N 7 ; r ; N
Fy = 2:]5:] (#42) + i1 (#4)* — tanzjy)? > Lon e
=S (gt o)
p= Sy T IO
f2=a+30, ((-7711) —cos 27"’”[1) Xip SAVASH

Js = Yioi((w2)* — tanaj,)? L e oner v
X1 ey

S5 o1 05 0 05 1 1s, ables 415 - s o s 1 18
ST
TeLoverteve \ R Lower lve onton comtours

with respect to lower level variables ith respect to lower level variables

i 5 . . ithresp ¢
Ty € [=5,10], Vi€ {1,2,...,p} 3y 3, = (22)
ahy € [-5,10], V i€ {1,2,... ~
: . X
vl € [=5.10], Vi€ {12 .., M GIOIO) N ‘
i - = B A oy )
vy € (F,5), Vie{l,2,..., A NN o]
P
. < . :
5o as 0 oas 0 -4 2 0 2 4 13 40 s 0 o0s 1 oas
X1 \\—/ Xul Xu
U: Lower level function contours P: Upper level function contours Q: Lower level function contours
Withrespect 1o lower evel vaiables  With respec 0 uppe levelvarables  withrespct o lower level vriabls
A3 X ) = (22) atoptimal lower level variables A3 ) = 22)
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Interaction: Conflicting
Lower level: Multimodality using Rastrigin’s function
Problem 4 Upper level: Convex (induced Space)

Upper and Lower Function Contours

=00 @) TAT \ :
2:’72,1:|("7g)2 . wox A\ . T e
By = 3o (v1)” = Xic (i) — log(1 + ) T VA RETENS
A=ELEw? i ‘ : W EDE o [J ‘) U :
fo=a+ X0 ((af)) —cos?m,ﬁ) ° U i U : R "I |
3= (|ols| — log(1 + ajy))? 11 } Tt s Lovertevelfonetioncomours (1 L1
T ith espet 0 lower vl varables T % 043 1
; X
i €[-5,10], ¥ ie{1,2.....p} o Jo e
o€ [-1,1], Vie{l,2,...,r} T / \? T
@ €[=5,10), ¥ ie{1,2,...,¢} il x| (j He | \ il
ziy €[0,e], Vie{l,2,...,r} 2 U H U I R s I U ! U :
LR B X L
TEESTY A 0 1 e e
Xn Xul X
U: Lower level function contours P: Upper level function contours Q: Lower level function contours
withrespct 1o lower level variables. with fespect 0 uper level variables it rspect to lower leve variable
A5y X ) = (-272) atoptimal lower level variables ey %)= D)
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Results Using BLEAQ

+ Following are the results for 10 variable instances of the test problems
(Sinha et al., 2014) using BLEAQ
+ Comparison performed against nested evolutionary approach

Number of Runs: 21
Savings: Ratio of FE required by nested approach against BLEAQ

Pr. No. | Best Func. Evals. Median Func. Evals. Worst Func. Evals.
LL UL LL UL LL UL
(Savings) (Savings)

SMD1 | 99315 610 110716 (14.71) | 740 (3.34) | 170808 1490
SMD2 | 70032 376 91023 (16.49) | 614 (3.65) | 125851 1182
SMD3 | 110701 620 125546 (11.25) | 900 (2.48) | 137128 1094
SMD4 | 61326 410 81434 (13.59) | 720 (2.27) | 101438 1050
SMD5 | 102868 330 126371 (15.41) | 632 (4.55) | 168401 1050
SMD6 | 95687 734 118456 (14.12) | 952 (3.25) | 150124 1410

For other problems as well, the improvement is more than an order of magnitude

{ACON 2
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Results on SMD1

X
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Overall Results on Eight Test
Problems

» Median results for eight bilevel test problems

» Comparison against the evolutionary algorithm of Wang et al. (2005)
o BLEAQ is an order of magnitude better

BLEAQ WJL Savings
TP1 15,432 | 85,499 5.54
TP2 15,632 256,227 16.39
TP3 4844 92,526 19.10
TP4 16,422 291,817 17.77
TP5 15,524 77,302 4.98
TP6 17,421 163,701 9.40
TP7 257,243 | 1,074,742 4.18
TP8 12.533 213.522 17.04

%%:ON CO ”
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Advanced Topics of EBO
COMulti-objective EBO

B At least one level has multiple objectives
COMEBO with decision-making

COMany-objective EBO, parallel EBO, multi-modal
EBO, meta-modeling EBO

OORobust EBO: Uncertainty in at least one level

CJEBO applications
M Parameter tuning of algorithms

M Practical applications
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Advanced EBO Ideas (cont.)

CIHighly constrained EBO
OOMixed-integer EBO

CJEBO with a fixed budget at LL and UL
CJEBO versus EO for F=f

OError propagation from lower level to upper
level
B Theoretical convergence studies

OEvolutionary Multi-Level Optimization (EMLO)

CEC-2017, San Sebastian, Spain
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Multi-objective Extension

Bilevel problems may involve optimization of multiple objectives at one
or both levels
Dempe et al. (2006) developed KKT conditions
Little work has been done in the direction of multi-objective bilevel
algorithms (Eichfelder (2007), Deb and Sinha (2010))
A general multi-objective bilevel problem may be formulated as
follows:

Min F(zy, ;) =(F1(Tus 1), - - -, Fp(@u, 21))

Tu,Ty

subject to
z; € argmin{f(zy, 1) = (f1(Tu, T1), - - - , fo(Tu, T1))
k)
9i(Tu, 1) > 0,i € I}
Gj(zy, 1) 20,5 € J.

~ [ ]
¥ ,\3
] “ CBEACON CO ” )
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Optimistic Multi-objective

Two levels of decision making Leader Follower
Multiple objectives involved at 2
both the levels —

-
obj 1
Leader
Objectives: Max Objective 1 %
Max Objective 2 © ;g‘
Followers obj 1
Objectives: Max objective 1 | |
- Obj 1 8
Max objective 2
obj 1
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Pessimistic Multi-objective

Two levels of decision making Leader Eollower

Multiple objectives involved at
both the levels

Leader

Objectives: Max Objective 1

Followers

Objectives: Max objective 1

0Obj 2

Max Objective 2

Max objective 2
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Preference Structure Known

Two levels of decision making Leader Follower

Multiple objectives involved at
both the levels

Leader
Objectives: Max Objective 1
Max Objective 2

Followers
Objectives: Max objective 1
Max objective 2

Lower level problem becomes single objective

o [ ]
four q") g | 4 CEC-2017, San Sebastian, Spain
f BEACON 4 ) \ Ankur Sinha and Kalyanmoy Deb

Uncertainty from Unknown
Preference Structure

Two levels of decision making Leader Follower

Multiple objectives involved at
both the levels

Leader

Objectives: Max Objective 1 ‘;‘?
Max Objective 2 ©

Followers

Objectives: Max objective 1 |
Max objective 2

obj 1

There is uncertainty around the frontier

dRinhagt al..a0 12,
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Challenges

« Such problems can be very difficult to handle

» Optimistic formulation makes little sense in these
problems

« Considering a known preference structure (and
accounting for uncertainties) might be a realistic and
viable approach

CEC-2017, San Sebastian, Spain
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X=X X) Xu=(X) xi=(y)

Minimize F(x) = (y‘ ’)

Subject to  (y1,¥2) € argming,, . { ( ;h )
2

Gi(X)=1+y +92>0,
—1<y,p<l, 0<z<L

g;(X):zLy?*yézﬂ},

* Lower level Pareto front depends on x
. . 04 er level
« Upper Igvel Pareto-optimal front lies on 02l e ool
constraint G, Bl oo fos s
« Maximum two solutions from each x 02 y ;
* Not all x in upper Pareto-optimal front 04
+ Solutions possible even below the upper 06
level Pareto-optimal front, but they are 08
infeasible T ia16-14-12 -1 -08-06

i

cAEIGhIelder.aQ0L ),
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Population structure

>
BLEMO » Lower and upper level

(Deb and Sinha, ECJ 2010) NSGA-IT
» Archiving

» Both levels use NSGA-Il iteratively

Lower level
NSGA-II
=0_—5

/

Upper level NSGA-II

Archive

T=1

A Business DM Problem

CEO: Leader and Dept Head: follower
(Zhang et al, 2007)

maximize F(x,y) = subject to(x) € argminx ,
f(x) = ( (4,6)(y1, \‘7 +(7,4,8)(x1,x2, x;) 2
) o) (6,401, w) +(8.7,4)(x1,x2,33)"
(G ol { o= 091000 + (940 mn)f <6l
2 A 82=(5,9)(v1,72)7 + (10, -1, -2)(x1,x2,33)T <924,
83=(3,-3)(y1,32)7 +(0,1,5)(x1,32,x3)T <420
G1=(3,9)(31,32)T +(9,5,3)(x1,7%2,x3)7 <1039,

T A T e —
X1,%2.51,¥2,¥3 > 0. Jeso L |
%,

» Weighted sum = \'\,, 1
solution (Zhanget = “a. |
al, 2007) is an oot “u 1
extreme solution 10F FessbleRegion T |

1600 | % -
1550 L : : - : :

N 450 500 520 540 560 580
o H

Boundary 2

_1 | of objective space/ TN o |

1 1 1 1 1 1

-2 -18 -16 -14 -12 -1
Fl

&= -
BEACON

Mine Taxation Strategy Problem from
Finland

Kuusamo has natural beauty and a famous tourist resort
o Contains large amounts of gold deposits
Dragon Mining is interested in mining in the region

Pros:

[e]

Generate a large number of jobs
Monetary gains
Cons:
o Run-off water from mining will pollute Kitkajoki river
o Ore contains Uranium, mining may blemish reputation

o Open pit mines located next to Ruka slopes will be a turn-off for
skiing and hiking enthusiasts

o Permanent damage to the nature

=
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BLEAQ Results

0 S T
-100 - T 1 4 a2
= -200 - a=1 Preferred | 26500 <= R <= 27768
€ 300 | N Region | . 323<-D <- 3998
c o 300 ’/ 3 <D<
Eo 200 a=2 \O B H
o 3 5
2o 3 H
£g 8 -s00r . 5
25 R \ g
na O 600 1 %
&
=700 I a=3 ‘\‘ b
-800 - | B
a denotes \
-900 - technologies a=4\\\ 7
PN I I O s ;
0 500 1000 1500 2000 2500 3000 3500 4000 Time Period

Objective 1 . o
Taxation strategies in preferred

Leader’s profit region.

Preferred strategy: ~75% profit to the government,
~25% to company
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Some
Problems
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EMBO Test Problem
Construction Principle

» Difficulties F2 Lower”] [Step 4: Fomn lower
. . e * %]
identified fevel problem fom (11 £2
Step 5: Form upper
» Bottom-up St:p3:sz(Ll,L21 /-levelpmblemﬁ'om
to (f1* 2%) £l (ul u2) and (L11.2)
approach
» Five-step
procedure

» Conflict between
lower and upper
levels

Z X

EMBO with Decision-Making

OPreference in LL

Pareto front may not i;
lead to UL Pareto e
solutions B
OConverse is not true 04
OORaises interesting oij I s
hierarchy among UL 0 0204 0.61:(:.8 1%12 14

Raises interesting scenarios,
which we are currently pursuing!
[ ]

. 004

and LL decisigns,
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Importance of LL Decision-Maker

« LL Decision-maker can make a decision on her own
. M-BLEAQ p— (Sinha, Malo, Deb, ECJ 2014)

1 |~ Front achieyed
by m-BLEAQ

05 1,

sastian, Spain

Fl ilyanmoy Deb

Bilevel Optimization with Uncertainties
> Uncertainty is, in most cases, inevitable in practical applications.
> Sources of uncertainties:
> Imperfect implementation, changing environment, etc.
> In the context of bilevel optimization problems
> Uncertainty in design variables and parameters.
> Uncertainty in objective and constraint function computations (Noise)
> Uncertainty in decision making information.

> Uncertainty in control of decision-making preferences between two
levels.

> Uncertainties in the context of bilevel optimization have NOT been
formally studied.

> Clear mathematical definitions and formulations of robust/reliable
bilevel solutions do NOT exist.

= COD
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IR EIF

Variation in Expectation

(Sinha, Malo and
* Optimistic PO front: No power on LL DM Deb, 2016)

* Pessimistic PO front: Complete power on LL DM
* Leader optimizes worst outcome from LL

* The difference between
optimistic and pessimistic fronts rolem
provide DM ideas at UL '

O Optimistic front
12 —— Lower level Pareto front

Ankur Sinha and Kalyanmoy Deb

Robust Bilevel Optimization

* Both upper and lower-level variables are uncertain within
their neighborhoods: Type-l Robustness:

Min(xy) F(x,y),
st. y€ argmin(y) {feﬁ(x, y)|g]~(x + Ax,y + Ay) <0,
V Ax € Bsx, Ay € B‘;y, ji= 1,...,JL},

Gj(x+ Ax,y + Ay) <0, V Ax € Bsx, Ay € Bsy,

i=1,...,Ju.

ol o
|(Bsx; Bsy)| Jze(x,y)+(Bsx,Bsy)

1

|(Bsx» Bsy)| Jze(x,y)+(Bsx.Bsy)

7 xy) f(=)dz,

Fef(x,y) F(z)dz.

Note that even if Ay = 0, LL is uncertain due to Ax perturbation,
stays as parameter uncertainties at LL
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BITEVEer UPTIMIZation WIth
Uncertainties:
Big Picture

Upper Level Problem
F(xy)
X

Lower Level Problem

R

CEC-2017, San Sebastian, Spain
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Robust Bi-Level
Optimization

Lower-level variables are uncertain

Global & Sengti¥ser Level

TV
1 Bs 2

Y Local & Robust,

y
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Robustness-based (Cont.)

Lower—level
solutions

o o =

F(x,y)
S N oo N

Feasible Region

» o

(b) Robust bilevel solutions for UnCaseB.

00 0.5 2-Variable ULFV | LLFV | ULVS | LLVS
Grid 00474 | 1.2169 | 060 | 118

O [ Best 0.0473 | 1.1906 | 05992 | 1.1819

S | Median | 0.0459 | 1.1848 | 05923 | 1.1908

2 | Worst | 00439 | 1.1826 | 05442 | 1.2116

&
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Type-ll Robustness

Min~(x,y) F(x,y), "
, oo y)| SRR < e,
sty =argminy) | g.(x + Ax,y + Ay) <0,
V Ax € Bsx,Ay € Bsy, j=1,...,JL
FRxy)-FXY)|
[FOGCY)| =1,

Gj(x+ Ax,y + Ay) <0, VY Ax € Bsx, Ay € Bsy,
i=12,...,Ju.

Infeasible region

Infeasible region

08
06 g
04 &
02

0 0.5 1 1.5 2 0 05 1 15 2

wLueu i, wan vewasuan, wpain
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IOWA Raccoon Watershed

max F(t,x) = (II(t,xn), B(xn))
st (xk, k) € arg;mfx{nk(‘rk, K k) s (7 2K F) e OFy
xk,
Vkedl,...,K},
*>0vke{l..., K}, ne{l,...,N},
v >0,vke{l,...,K},me{l,.., M},
*>1,Vke{1... K},

N-1

k(o k ok Kk k_ ko k

s MAX 7 (P, W5, T) = Py — Y waxy — TNUNYXY
e =

e otz st y* < PE(aF),

CEC-2017, San Sebastian, Spain
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IOWA Raccoon Watershed Results

(GECCO0-2017)

a0 Sn am am a0 1000 1200 1400 1600 1500 2000 2200
o 50 1000 1500 Nitrogen loading i the basin
Nitogenloading inthe ba 560 . —

- N=455 N= 114 N=1656

o= Nirogen oading in the basin
for q} Y 4IhS 7 CEC-2017, San Sebastian, Spain
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Constrained Bilevel Optimization

Constraints exist in almost every
practical engineering design X2
problem, and play a critical role in
deciding the optimal solution.

v

Feasible
region

> The deterministic optimum usually
lies on a constraint surface or at the

f : : Reliable
intersection of constraint surfaces. i

solution

> Fail to remain feasible in many occasions. Deterministic

> Many studies aim to handle this S RREEEEEEE & -optimum
issue in single level optimization, Uncertainities
none yet in the domain of bilevel inx1and x2 "
optimization.

CEC-2017, San Sebastian, Spain
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Reliability in Bilevel Problem

Reliable bilevel solution definition:

Minimize(x y) F(x,¥),
subjectto y € argmingy) { £(x,¥)|(P(AJZ 95(x,) S 0)) 2 7},
(P(NJY, Gj(x,y) < 0)) > R.

P () signify the joint probability of the solution (x, y) being feasible for all
constraints.

The effect of uncertainties in lower, upper or both levels are different
because of the unequal importance of each level.

Test problems proposed for the purpose of concept demonstration, NOT for
algorithm performance assessment.
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A Scenario

> Constraint functions at both levels
Lower Level

subjectto y € argmaxy, { gj(z()’(?;z) zyg,’ i=1,23 } ).
Gi(x,y) 20, j=1,23,
—4 < a1 <10,-100 < x5 < 200,
—4 <y <10,-100 < ya < 200.
Gi1(x,y) = (& + 28)(z1 — 2)? — 2o,
Ga(x,y) = x2 —12.5(% + 28)(z1 - 5),
Gs(x,y) =5(z1+4— (% + ) @1 +8— (4 + ) — a2,

Maximize(x,y) F(x,y) = =2, . \\\\\\
N

besosss

SEX]

a1(x,y) = (5 + )1 —2)% -,
92(%,y) = y2 — 125(3% + ) (w1 - 5),
93(x,y) =5 +4— (T + )N +8- (F + ) e

Z-Variable | ULFV [ LLFV | ULVS | LLVS
g [ Grd [70.00 [ 7000 | 7.00 [70.00 | 7.00
£ [T Best 6964 | 6464 | 7.00 | 6964 7.00
% |5 | Median| 69.61 | 69.68 | 6.9988 | 69.61 | 7.0011
A |2 | Worst | 69.50 | 69.63 | 6.9952 | 69.50 | 7.0001
o | Grid [ 032 | 032 | —0.80 | 0.30 | —0.80
S [T Best 0.3022 | 0.3022 [—0.7917[0.3022[—0.7917
| = |5 | Median| 0.2745 | 0.2862 | —0.7859|0.2745| —0.7903|0.2862  CEC-2017, San Sebastian, Spain
L |2 | Worst | 02354 | 03009 | —0.7859|0.2354| —0.7914|0.3009 Ankur Sinha and Kalyanmoy Deb

Tri-Level Optimization

* Three levels of optimization problems interlinked by two
consecutive levels
* Min F(x,y,z)
* Min F(y,z), given x
* Min f(z), given x and y
» Constraints are expected at every level
* To make an application realistic, we need to replace lowest
level heuristic/rule based
* Not much work available, but all issues discussed before
are applicable here too
* BLEAQ can be extended
¢ Currently pursuing

4= . A
BEACON C(D\
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A Case Study: Supply Chain Management

Yearly Strategic Level
Strategic Level Planning Min. F(xy) = ;Zﬂ:fmm(x: y), Transport Cost

sty argmin{fua(xy) = L f(x3) |
Operational Level "
Transport Cost ;wi +¥j < Cjy i=1,...,d(estinations),

c
ZYi; =D;, j=1,...,c(arriers),
i=f

m=1,2,...,p(lants), n=1,2,...,52 weeks.

Trucks | Cost | Service | Min. Charge » UL: Plant to destination
Carrierl | 7 $1.93 | 0.90 $4050 layput
Carrier2 | 8 $1.82 | 0.82 $4370 » LL: At each plant, carrier
Carrier3 | 6 $1.88 [ 0.86 $3380 companies are pre-
Carrierd | 9 $1.97 | 093 $5320 determined
Carrier5 | 5 $1.94 | 091 $2910 . ) )
Camiore | NA. [ $239 | 088 NA. Allocation of goods to carrier

is LL task

CEC-2017, San Sebastian, Spain
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. d
$jey;) = max(} DDi(x) -3y -CC, W}

State-Level and Zip-Level Results

44,000 ZIP Codes

Advantage of Using Bilevel Optimization Over
Single-Level Optimization:

Model | Single-level Bilevel
Transportation Cost | $16.2M $15.5M (4.3%)

-
> CEC-2017, San Sebastian, Spain
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Uncertainty in Demand
» Seasonal demand of goods assumed with uncertainty
» Robust bi-level optimization performed

» Robust solution is able to handle uncertainties better than
the deterministic solution

Minois (seasonal) L Determ.
17.5 | Robust

16
- ’:1 l l =
o o
15

0=0.05 0=0.10 0=0.15

Domend inshpments
Transportation Cost ($ Million)
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Tri-Level Consideration

Min. F(xy,z) =Y fi(xy.2), (Strategic level) Yearly, Plant to
k

destination layout
where y, z solve:

Min. fi(x,y,2) =Y ) fun(xy,2), (Tactical level) Quarterly, Choice of
mr Carriers

where z solves:

(Operational level) DailY, Allocation of
j=1 goods to trucks

d
s.t. { Z w; -z < Ci(y), i=1,..., d(estinations),
Yzij=Dij=1,..., c(arriers),

d
flloyz) = max (Y3 DDi(x) -2 CGi(y), W}

s TTansportation Cost | $16.2M

$15.5M (4.3%) $15.3M (5.5%)
b N l '\ -2017, San Sebastian, Spain
{ACON CO | I > Most b%ﬁ%f@mha and Kalyanmoy Deb

k=12,... terms), m=12,..., p(lants), n=1,2,..., Sf;:);:;kb
Advantage of Using Tri-level Optimization: L/Finer optimization
Model ‘ Single-level  Bilevel Tri-level

Bi-Objective at Operational Level

» Operational level at each plant considers two objectives:
» Transport cost

» Service quality obtained carrier companies:frsxz)x(xzy) = ;_7 yij - CSj.
» Produces a PO front at each plant
» Strategic level chooses the best overall Transport Cost

-

091
®
o
09
°
Trade-off:
2 0.89
3 ° Model | Single-objective ~ Bi-objective
S
g 0.88 Transportation Cost | $15.5M $15.9M
E ° Service Quality* | 0.86 0.89
0.87
Average service quality over all plants
ose At one of the plants
)
i °%e 3 302 304 306 308 31 312 CEC-2017, San Sebastian, Spain
% Transportation Cost 104 /) Ankur Sinha and Kalyanmoy Deb
Conclusions

» Bilevel problems are plenty in practice, but are avoided
due to lack of efficient methods

» Bilevel optimization received lukewarm interest by EA
researchers so far

» Population approach of EA makes tremendous potential

» Nested nature of the problem makes the task
computationally expensive

» Meta-modeling based EBO and its extensions show
promise

» Extension to Tri-Level optimization is needed
» Application to industry would be beneficial

=" <\,
{woru 2
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