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• Theoretical computer science 
– polynomial time approximation algorithms to find approximate solutions 

to NP-hard optimization problems 
• Stringology, bioinformatics 

– approximate string matching 
• Bio-inspired models in AI 

– approximation of functions using artificial neural networks 
• Mathematics 

– approximation of functions; numerical mathematics 
• Computer engineering 

– FP numbers, computer arithmetic, … 
– S. H. Nawab et al.: Approximate Signal Processing, Journal of VLSI Signal 

Processing , vol. 15, pp. 177-200, Jan. 1997. 
 

The notion of approximation is well known in … 
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Why Approximate Computing again? 



• Search for "approximate computing" in articles by Google Scholar 
(April, 2017) 
 

Approximate computing (AC) in literature 
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• Approximate Computing 
– Motivation 
– Error resilience  
– Sensitivity analysis and error metrics 
– Overview of approximation techniques 

• Evolutionary algorithms and genetic improvement 
• EA in SW approximations 

– Extension of Java - ExpAX 
– Median  

• EA in HW approximations 
– Approximations at the hardware description language level 
– Approximate multipliers in ANN 
– Library of approximate components 

• Formal relaxed equivalence checking in approximate computing 
– Binary decision diagrams 
– Approximate circuits with formal error guarantees 

• Conclusions 
 
 

 

Tutorial Outline 
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The end of Dennard scaling 
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Power density (power consumption per chip area) remained 
acceptable from one technology node to another even with 
increasing frequency (based on data for common processors). 

The end of Dennard scaling 

Kirk M. Bresniker et al. “Adapting to 
Thrive in a New Economy of Memory 
Abundance”, Computer, 48,  2015. 

Moore’s law will 
survive next 10-15 
years (ITRS). 



• Energy efficiency and dark silicon 
– High performance & low power computing is 

requested (Big data processing in data centres; 
Mobile electronics with limited power budget) 
 

• Variability issues 
– Many “unreliable” components on a chip 

fabricated with modern process technologies 
(Limited use of fault tolerant mechanisms 
because they are expensive; Reliable computing 
with unreliable components) 
 

• Error resilience 
– Many applications are error-resilient.  

(We are willing to tolerate errors.) 

Roots of the new interest in AC 
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0% 20% 40% 60%

Servers
Power (distribution,…

Networking equipment
Other infrastructure

Data centers  - monthly costs 

Gupta, Accelerating Datacenter Workloads 
Intel, FPL 2016 

22nm MOSFET (line-edge and surface 
roughness, random dopant fluctuations  
=> threshold voltage variation) 

60% instructions golden solution 



• Typical machine learning, signal processing and document processing 
applications have a mix of resilient and sensitive computations. 

• Chippa, 2013: 83%  runtime spent in computations (such as matrix and vector 
operations) that can be approximated. 

Error resilience 
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% Runtime in resilient kernels 
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Matrix Vector Multiplication
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Dot Product Computation
Distance Computation
Distance Computation

Dominant resilient kernel (% runtime) 

Chippa, et al. Analysis and characterization of inherent application resilience for approximate computing , DAC 2013 



• Applications with analog inputs  
– image processing, sensor data processing, voice 

recognition, etc., that operate on noisy real-world data. 
They are inherently resilient to some noise. 

• Applications with analog output  
– multimedia, image rendering, sound synthesis, etc. The 

output is intended for human perception and can 
inherently tolerate errors imperceptible to users. 

• Applications with no unique answer  
– web search, machine learning, autonomous agents, etc., 

which do not offer a unique answer and multiple possible 
answers are acceptable. 

• Iterative and convergent applications  
– data analytics and numerical computations that iteratively 

process large amounts of data. They often sample data, 
stop the convergence procedure early, or apply 
approximate heuristics.  

The origin of resilience 

8 Esmaeilzadeh et al.: COMM. OF THE ACM, 59(1), 2015 



• The concept of approximate computing has been developed in 
different ways and at various levels of computing stack (circuit, 
component, memory, processor, compilers, applications, …) 

• Software-level approximations 
– Extensions of general purpose languages (Java, Verilog) to support 

approximations in data types, operators, … e.g. EnerJ, Axilog, ExpAx … 
– Neural network replaces general purpose code [Esmaeilzadeh el al., 2013] 

• Specialized processors supporting approximate computing 
– Improving Efficiency of Extensible Processors by Using Approximate 

Custom Instructions [Kamal et al., 2014] 
• Circuit approximation 

– over-scaling based approximations 
– functional approximations 

• Memory approximation 
– approximations in memory cells, organization, access, hierarchy … 

 

Approximate computing 
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What is Approximate computing? 
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“Approximate computing exploits the gap between the 
level of accuracy required by the applications/users and 
that provided by the computing system, for achieving 
diverse optimizations.”  
 [Mittal S., ACM Computing Surveys 2016] 
 
“The requirement of exact numerical or Boolean 
equivalence between the specification and 
implementation of a circuit is relaxed in order to 
achieve improvements in performance or energy 
efficiency.”  
 [Venkatesan et al., 2011] 
 
“Computing efficiently by producing results that are 
good enough or of sufficient quality.” 
 [Venkataramani et al., DAC 2015] 
 
 



• Approximations are conducted across the whole computer stack: 
– Circuit 
– Component 
– Memory 
– (Parallel) Processor architecture 
– Algorithm 
– Compiler 
– Operating system 
– Application  

• A holistic approach is needed to find the best trade-off between 
error, power and performance at the global (system) level. 

• AC reduced energy requirements of many applications: image 
processing, video processing, deep neural networks, …   

 

Approximate computing as a new paradigm 
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A great opportunity for EAs! 



Sensitivity analysis 
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• The goal is to identify subsystems suitable for undergoing the approximation. 
• Method: Random/guided modification of the original implementation and 

statistical evaluation of the impact on the quality of result. 
In software 
• precision of number representation 
• data storage strategies 
• code simplification 
• relaxed synchronization 
• unfinished loops 
• skipped function calls 

In hardware 
• bit width reduction 
• intentional disconnecting of 

components 
• timing changes 
• power supply voltage changes 
• fault injection 

Chippa et al., ACSSC 2013 



• Arithmetic error metrics 
– The worst-case error  

(error magnitude, error significance) 
– Relative worst-case error 
– The average-case error  

(average error magnitude, mean 
error distance) 

• Generic error metrics 
– Error probability (error rate) 
– Maximum Hamming distance  

(bit-flip error) 
– Average Hamming distance 

• Application-specific error metrics 
– Distance error 
– Accumulated worst-case error and 

accumulated error rate 

Error metrics used in approximate computing 
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𝑒𝑤𝑠𝑡 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛 | int 𝑓 𝑥 − int(𝑓 𝑥 ) | 

 

𝑒𝑟𝑒𝑙 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛

| int 𝑓 𝑥 − int(𝑓 𝑥 ) |
int(𝑓 𝑥 )

 

 

𝑒𝑎𝑣𝑔 𝑓, 𝑓 =
1
2𝑛  | int 𝑓 𝑥 − int(𝑓 𝑥 ) 

∀𝑥∈ℬ𝑛

| 

 

𝑒𝑝𝑟𝑜𝑏 𝑓, 𝑓 =
1
2𝑛  𝑓 𝑥 ≠ 𝑓 (𝑥)

∀𝑥∈ℬ𝑛

 

 

𝑒𝑏𝑓 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛  𝑓𝑖 𝑥 ⊕ 𝑓 𝑖(𝑥)

𝑚−1

𝑖=0

 

 

𝑒ℎ𝑑 𝑓, 𝑓 =
1
2𝑛   𝑓𝑖 𝑥 ⊕ 𝑓 𝑖(𝑥)

𝑚−1

𝑖=0∀𝑥∈ℬ𝑛

 

 
f, 𝑓  – original and approximate solution 
n, m – the number of inputs and outputs 
int – returns a decimal value from m bits 



Approximation techniques - examples 
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• precision scaling 
• loop perforation 
• load value approximation 
• memorization 
• task dropping/skipping 
• memory access skipping 
• data sampling 
• using different program 

(circuit) versions 

• using inexact or faulty 
hardware 

• voltage scaling 
• refresh rate reducing 
• inexact read/write 
• reducing divergence in 

GPUs 
• lossy compression 
• use of neural networks. 

Mittal S., ACM Computing Surveys, 2016 



SW approximation: Code replaced by ANN 

15 Esmaeilzadeh et al.: COMM. OF THE ACM, 59(1), 2015 



• Principle: To implement a slightly different function that leads to 
energy/delay/area reduction but a non-zero error.  
 
 
 
 

Functional approximation 
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F(x) F’(x) 

Power: 193 uW  
Delay: 10 ns 
Area: 35um2 

Power: 100 uW  
Delay: 5 ns 
Area: 20 um2 
 
Error: 5% 

Traditional view Approximate computing 

Functional equivalence 
is requested between the specification 

and implementation at all levels. 
Error as a design metric! 

Relaxed functional equivalence 

A complex multi-objective design/optimization problem! 



Languages supporting approximate computing 
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• EnerJ [Sampson et al., PLDI 2011] 
– An extension to Java that adds approximate data types. 
– Approximate data can be processed more cheaply but less reliably. 
– Approximate operations by generating code with cheaper approximate instructions. 
– The system can statically guarantee isolation of the precise program component from 

the approximate component. 
• Rely [Carbin et al., OOPSLA 2013] 

– Programmer can mark both variables and operations as approximate.  
– Rely works at the granularity of instructions and symbolically verifies whether the 

quality-of-result requirements are satisfied for each function. 
– Rely requires programmer to provide preconditions on the reliability and range of the 

data 
• Axilog [Yazdanbakhsh et al., DATE 2015] 

– A set of language annotations that provide the necessary syntax and semantics for 
approximate hardware design and reuse in Verilog. 

– Axilog enables the designer to relax the accuracy requirements in certain parts of the 
design, while keeping the critical parts strictly precise. 

• Others: ExpAX, Chisel, … 
• They require a hardware (CPU) supporting approximate computing  

 
 



Quality programmable processors: Concept 
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Example: Quora is an experimental quality configurable vector processor with 289 processing 
elements in 45 nm technology [Venkataramani et al. Micro 46, 2013] 
 



Timing induced approximations 
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• Design techniques 
¾ over-clocking 
¾ voltage over-scaling 
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• Power reduction tricks 
¾ Assume: Accurate circuit D1 at 

frequency f1 

¾ D1 is approximated to D2 which 
can work at higher freq. f2 (f2 > f1) 

¾ But, D2 is operated at f1 with 
lower Vdd => power saving 

Courtesy of K. Roy 



• Approximate Computing 
– Motivation 
– Error resilience  
– Sensitivity analysis and error metrics 
– Overview of approximation techniques 

• Evolutionary algorithms and genetic improvement 
• EA in SW approximations 

– Extension of Java - ExpAX 
– Median  

• EA in HW approximations 
– Approximations at the hardware description language level 
– Approximate multipliers in ANN 
– Library of approximate components 

• Formal relaxed equivalence checking in approximate computing 
– Binary decision diagrams 
– Approximate circuits with formal error guarantees 

• Conclusions 
 
 

 

Tutorial Outline 
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Evolutionary algorithms: GA, GP, LGP, CGP, GE … 

21 

GP: syntax trees 

(0, 2, 2) (0, 1, 0) (1, 3, 2)(3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8) 

GA: vectors of parameters  

GE: grammatical evolution 

LGP: machine level code 

Cartesian GP: Directed acyclic graphs 

cf. HeuristicLab 



Cartesian Genetic Programming (CGP) [Miller, 1999] 
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• ni primary inputs 
• no primary outputs 
• nc columns 
• nr rows 

ni 

ni+1 

ni+nr-1 

ni+nr 

ni+nr+1 

ni+2nr-1 

ni+(nc-1)nr 

• na inputs of each node 
• * function set 
• L-back parameter 

ni+ncnr-1 

nr 

nc 

0 

1 

ni-1 

ni no 

Nodes in the same 
column are not allowed 
to be connected to 
each other.  
No feedback! 

a 

b 
g(a,b) 



CGP: Representation for logic networks 
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Genotype (netlist):  
na+1 integers per node; no integers for outputs;  
Constant size: ncnr(na + 1) + no integers 
 
Phenotype (directed acyclic graph � circuit): 
Variable size; unused nodes are ignored. 

• CGP parameters 
• nr=3 (#rows) 
• nc = 3 (#columns) 
• ni = 3 (#inputs) 
• no = 2 (#outputs) 
• na = 2 (max. arity) 
• L = 3 (level-back 

parameter) 
• *= {NAND(0), NOR(1), 

XOR(2), AND(3), OR(4), 
NOT (5)}  



CGP: Fitness function for circuit design 
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target table: 

Specification 
(1-bit adder), 

Typical fitness function (circuit functionality):  
 

𝑓 =  |𝑦𝑖

𝐾

𝑖=1

− 𝑤𝑖| 

Circuit response 

Desired response 

The number of test vectors 

K = 2inputs for combinational circuits. Not scalable!!! 

Additional objectives:  
• area (the number of gates) 
• delay 
• power consumption etc. 



CGP: Mutation-based search 
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mutation 

• Mutation: Randomly select h integers and replace them by randomly 
generated (but legal) values: 

(for full adder) 



CGP: Search algorithm (1 + O) 
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• Why EA in AC? 
– In AC, partially working solutions are sought. 
– In EA, partially working solutions are improved. 
– EAs are excellent in multi-objective design and optimization. 
– Constraints can easily be handled. 
– EA can be seeded with the original code (circuit). 

• Is AC similar to Genetic improvement? 
– Genetic improvement (of existing SW/HW) is the application of 

evolutionary and search-based optimization methods with the aim 
of improving functional and/or non-functional properties of existing 
software/hardware 
 

Why EA in Approximate computing? 
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• automatic bug fixing (real bugs in real C programs) 
– W. Weimer, et al.  Automatic program repair with evolutionary computation. Communications of the ACM, 

vol. 53, no. 5, pp. 109–116, 2010. 

• an improved version of C++ code from multiple versions of a program written 
by different domain experts (e.g. improved MiniSAT) 

– J. Petke, et al. Using genetic improvement and code transplants to specialise a C++ program to a problem 
class. In  17th European Conference on Genetic Programming, LNCS, vol. 8599. Springer, 2014, pp. 137–149 

• improved CUDA programs (DNA analysis SW) 
– W. Langdon. Improving CUDA DNA Analysis Software with Genetic Programming. In Genetic and 

Evolutionary Computation Conference (GECCO 2015): 1063-1070 

• Bowtie2, a widely-used DNA sequencing system, consisting of 50k lines of C++ 
code, was reduced by GI to 20k lines of code;  with an average 70 times faster 
execution than the original code 

 
 

 
 
 

Genetic improvement of SW: Examples 
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-    W. Langdon and M. Harman: IEEE Tr. on 
 Evol. Computing. 19(1), 2015 



Genetic improvement vs. Approximate computing 
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er
ro

r 

power 

acceptable 
error 

approximate computing 

initial solution 

genetic improvement 

The Genetic improvement method does not usually accept 
solutions increasing the error (w.r.t the original implementation) 
In AC, genetic improvement can tolerate some errors. 



• Evolutionary optimization 
– optimization of the data type (bit width) to variable assignment - in 

the source code (e.g.  GRATER) 
– selection of operations  to be approximated – in the source code 

(e.g. ExpAX) 
• Genetic improvement with errors enabled 

– existing solutions (SW or HW) are approximated by GP to get a 
suitable trade-off between error and power/performance (e.g. 
ABACUS, EvoApprox8b, …) 

• Evolutionary design (from scratch) 
– GP is used to evolve desired approximate solutions from scratch 

(e.g. CGP in the multipliers approximatio, median, image filter …) 
 

How are EAs used in Approximate computing? 

30 



Tutorial Outline 
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• Approximate Computing 
– Motivation 
– Error resilience  
– Sensitivity analysis and error metrics 
– Overview of approximation techniques 

• Evolutionary algorithms and genetic improvement 
• EA in SW approximations 

– Extension of Java - ExpAX 
– Median  

• EA in HW approximations 
– Approximations at the hardware description language level 
– Approximate multipliers in ANN 
– Library of approximate components 

• Formal relaxed equivalence checking in approximate computing 
– Binary decision diagrams 
– Approximate circuits with formal error guarantees 

• Conclusions 
 
 

 



SW approximation 
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• ExpAX 
– A new programming framework that employs error expectations.  
– HW/CPU supporting approximate computing is assumed. 
– A static safety analysis is performed that uses the high-level expectations to 

automatically infer a safe-to-approximate set of program operations  
 

 

Software is annotated in order to introduce approximations 

ExpAX: A Framework for Automating Approximate Programming, SCS Technical Report, GT-CS-14-05, Georgia Institute of Technology, July, 2014 



SW approximation: GA in ExpAX 
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• Programming model with expectations (v 
is variable) 

– accept rate(v) < 0.2 
– accept magnitude(v) > 0.9 with rate < 0.3 

• Finding possible safe-to-approximate 
variables 

– Unsafe-to-approximate variables are 
variables violating memory safety or 
functional correctness  

• GA used to find a subset of safe-to-
approximate operations  

– Fitness = min. (W1.error + W2.energy)  
– Chromosome: a bit vector representing a 

subset  (approximate (‘0’) or precise(‘1’))  
• Greedy algorithm used to refine the GA 

result. 
• Significant energy savings (up to 35%) with 

large reduction in programmer effort (3x 
to 113x less annotations w.r.t EnerJ) while 
providing formal safety and statistical 
quality-of-result guarantees. 

ExpAX: A Framework for Automating Approximate Programming, SCS Technical Report, GT-CS-14-05, Georgia Institute of Technology, July, 2014 

Approximate HW 

Example 



Median in image filters 
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filtered image 
(9-input exact median filter) 

corrupted image  
(10% pixels, impulse noise) 

 

original 



9-input median function 
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pixelvalue opt_med9 (pixelvalue * p) 
{ 
    PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; 
    PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ; 
    PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ; 
    PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ; 
    PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ; 
    PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ; 
    PIX_SORT(p[4], p[2]) ; return(p[4]) ; 
} 

Source: http://ndevilla.free.fr/median/median.pdf 

#define PIX_SORT(a,b) {  
 if ((a)>(b))  
   PIX_SWAP((a),(b));  
} 



Approximate median using CGP 
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Cartesian Genetic Programming (CGP) for median approximation 
• Median network (consisting of up to N operations) is represented by means of 

an one-dimensional array of N nodes. 
• Each node can act as:  identity (0), minimum (1), maximum (2) 
• Each candidate solution is encoded using 3N + 1 integers. 
• Fitness function (single objective) 

e𝑟𝑟𝑜𝑟 =  𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑖 − 𝑂𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)
𝑖∈𝑆

 

• Example for 3-input median: 

Chromosome: 0, 2, 3;  3, 2, 0;  0, 2, 2;  5, 3, 1;  6, 1, 2;  7, 0, 0;  6, 8, 2;   8 



Approximate median using CGP 
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Experimental setup 
• (1+4)-ES, no crossover, 5 % of the chromosome mutated 
 

Median-9 Median-25 

Inputs 9 25 

Outputs 1 1 

Generations 3 × 106 (3 hours) 3 × 105 (3 hours) 

Training vectors 1 × 104 1 × 105 

Reference (exact) solution 38 operations 220 operations 

Number of nodes 6 – 34 operations 10 – 200 operations 

60% operation 20% operations original 



Approximate median: Quality 

38 

9-input median 
fully-working: 38 operations 

25-input median 
fully-working: 220 operations 

21% reduction 

52% reduction 

84% reduction 

4.8% 

95.2% 

65.1% 

24.6% 

20.2% 13.4% 
1.2% 

23.8% 19.4% 
12.3% 5.5% 

14.3% 

27% reduction 

54% reduction 

81% reduction 

94.4% 

45.9% 

19.0% 



Approx. 9-median as SW for microcontrollers 
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#define PIX_SORT(a,b) {  
 if ((a)>(b))  
   PIX_SWAP((a),(b));  
} 

ops = operations in the source code.  

V. Mrazek, Z. Vasicek and L. Sekanina. GECCO GI Workshop, 2015 

fully-working median 

4.8% error prob.,  
max. error dist. 1 
21% power reduction 

34.9% error prob.,  
max. error dist. 2 
52% power reduction 



• Key idea: reduce the number of compare-and-swap operation in 
sorting networks to improve energy-efficiency 

• To model the error introduced by the approximations in sorting 
networks, the distance between the rank of the returned element and 
rank given by the specification is measured. 

Energy-efficient implementation of sorting networks 

MRAZEK V., VASICEK Z.: Automatic Design of Arbitrary-Size Approximate Sorting Networks with Error Guarantee. In: PATMOS 
2016, pp. 221-228 
VASICEK Z., MRAZEK V.: Trading between Quality and Non-functional Properties of Median Filter in Embedded Systems. Genetic 
Programming and Evolvable Machines, 2017, 18:45–82 
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power reduction: 52% 
error: <14 for 99% cases 

16-input sorting network 256-input sorting network 

power reduction: 9% 
error: <2  for 99% cases 



Tutorial Outline 

41 

• Approximate Computing 
– Motivation 
– Error resilience  
– Sensitivity analysis and error metrics 
– Overview of approximation techniques 

• Evolutionary algorithms and genetic improvement 
• EA in SW approximations 

– Extension of Java - ExpAX 
– Median  

• EA in HW approximations 
– Approximations at the hardware description language level 
– Approximate multipliers in ANN 
– Library of approximate components 

• Formal relaxed equivalence checking in approximate computing 
– Binary decision diagrams 
– Approximate circuits with formal error guarantees 

• Conclusions 
 
 

 



Functional circuit approximation 
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Design Process 

Original design: 
gate level / RTL / behavioral 

Approximate circuit 
𝑒𝑎𝑣𝑔 𝑓, 𝑓 =

1
2𝑛  | int 𝑓 𝑥 − int(𝑓 𝑥 ) 

∀𝑥∈ℬ𝑛

| 

 

Quality metric 

• Design methodology 
• Manual [Kulkarni et al.: J. Low Power Electronic 2011] 

• Automatic (= some heuristics used) 
• Heuristic algorithms: SALSA (DAC 2012), SASIMI (DATE 2013), ABACUS 

(DATE 2014), ASLAN (DATE 2014), AIG-REV (ICCAD 2016) … 
• GP-based methods: CGP (ICES 2013, DDECS 2014, EuroGP 2015, IEEE 

Tr. on EC 2015, FPL 2016, GENP 2016), GP (ABACUS with NSGA-II 2017)  



• Correct results for 15 out of 16 input combinations (almost 50% area 
reduction, lower delay). 

• Used as a building block for larger multipliers and then in image processing 
applications. 

Manual approximation: Multipliers 

43 

accurate 
approximated 

Error probability Dynamic power reduction for various frequencies 

AxB 0 1 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 4 6 
3 0 3 6 7 

Kulkarni et al. Trading Accuracy for Power in a Multiplier Architecture, VLSI Design, 2011 

MSB removed! 



• Original file: Verilog 
• Abstract Syntax Tree (AST) transformations 

(mutations) 
– Data type simplification 
– Operation transformations (e.g. + -> or) 
– Arithmetic expression transformation 
– Variable to Constant transformations 
– Loop transformations 

• Search algorithm: NSGA-II – based 
• Fitness is obtained by circuit simulation and 

combines the error & power 

ABACUS: Approximations at Behavioral RT-level 

44 Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017 



ABACUS: Results 

45 Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017 

Benchmark problems: 

Results of evolutionary approximation: 



GRATER: GA-based optimization of data types 

46 Lotfi A. et al.:  GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. DATE 2016 

• Sensitivity analysis performed to find safe-to-
approximate variables (AV) in OpenCL kernel. 

• Chromosome: n integers specifying precision 
(i.e. data type) of n variables from AV. 

• Objective: to find an approximate kernel that 
minimizes the resource utilization on FPGA 
while meeting the target quality. 



CGP for circuit (functional) approximation 
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• Error-oriented (single-objective) method 
• CGP gradually degrades a fully functional circuit 

until a circuit with a required error is obtained. 
Then, the area (and so power consumption) is 
minimized for this error. 

Error 

Ar
ea

 

Area 

Er
ro

r 

• Resources-oriented (single-objective) 
method 
• CGP is used to minimize the error, but only 

limited resources (components) are provided, 
insufficient for constructing a fully functional 
circuit. 

Ar
ea

 

Pareto 
front 

Error 

• Multi-objective optimization 
• All target parameters are optimized together. 

 
 

Initial circuit 
Resulting circuit 



Energy-efficient implementation of ANNs 
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Approximations introduced in: 
• ANN structure – removing nodes of NN 

[Venkataramani et al. ISLPED’14] 
• Learning algorithm 
• Memory – approximate Load/Store 

[Srinivasan et al. DATE’16] 
 

• Pipeline 
• Reducing data bit-width 

[Judd et al. ICS’16] 
• Multiplication (approx. 45% of total power) 

Multiplierless multiplication  
[Sarwar et al. DATE’16] 

• Activation function 
[Du et al. ASP-DAC’14] 

• Sum function 
 

[Judd et.al. WAPCO’16] 
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Energy-efficient implementation of ANNs 
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Scenario A: 
• Multiplication  

𝑚 𝑎, 𝑏 = 𝑎 ⋅ 𝑏 + Δ 𝑎, 𝑏  
• Classification accuracy :  

10.77% 
 

MNIST dataset classification: 32x32 – 100 – 10 MLP network (classification accuracy 
94.16% with accurate implementation). We introduced an approximate multiplier 
by adding a  jitter function Δ(𝑎, 𝑏), resulting in a 5.2% error for multiplication. 

Scenario B: 
• 80% of multiplications are by 0 
• Multiplication  

𝑚′ 𝑎, 𝑏 =  
0 𝑖𝑓 𝑎 = 0 ∨ 𝑏 = 0

𝑎 ⋅ 𝑏 + Δ 𝑎, 𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

• Classification accuracy : 94.20% 

 

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 



CGP in approx. multiplier design for ANNs 

50 Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 

Accurate multiplier – initial circuit (6) 
• CSAM RCA, CSAM RCA, RCAM, WTM CLA, WTM CSA, WTM RCA 

Allowed errors:  𝜀 ∈ {0.5%, 1%, 2%, 5%, 10%, 15%, 20%} 

CGP parameters 
• 𝑛𝑖 ∈ 14,22 ; 𝑛𝑜 ∈ 14,22 ; 𝑛𝑟 = 1; 250 < 𝑛𝑐 < 780 
• Functions: {NOT, AND, NAND, OR, NOR, XOR, XNOR} 
• Error constraints: 

1. ∀𝑎, 𝑏: 𝑚 𝑎, 𝑏 − 𝑎 ∗ 𝑏 ≤ 𝜀 ⋅ 2𝑛𝑜  
2. ∀𝑎: 𝑚 𝑎, 0 = 𝑚 0, 𝑎 = 0 

• Fitness function: 

𝐶 𝑚 =  −𝐺𝑎𝑡𝑒𝑠𝐶𝑜𝑢𝑛𝑡(𝑚) 𝑖𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 1  𝑎𝑛𝑑 (2) 𝑚𝑒𝑡,
−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



CGP in approx. multiplier design for ANNs 

51 Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 

• In total, 852 approximate 7-bit and 11-bit multipliers were evolved by 
CGP. 

• Multipliers were sign-extended using one’s complement. 
• The 8-bit and 12-bit multipliers were applied in NNs. 
• The NNs were retrained with approximate multiplication operation using 

backpropagation algorithm. 
• Approximate multipliers showing the best trade off between power and 

accuracy in NN were selected (for different error targets). 
 



Evolved approximate multipliers for ANNs 
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Results of synthesis of sign-extended multipliers with Synopsys DC 
45 nm technology 
Timing: 

8-bit multipliers: 2.5 GHz 
12-bit multipliers: 2 GHz 

Accurate multiplier was implemented in Verilog using standard * arithmetic 
operator 

 

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 



Energy-efficient implementation of ANNs: MLP 
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• Handwritten number dataset 
(dataset used for benchmarking) 

• Fully connected MLP network 
• 28x28 inputs, 300 hidden neurons, 

10 outputs 
• 60k training images 
• 10k testing images 
• More than 238k multiplications for 

approximation 
• Initial classification accuracy: 

– 8b: 97.67% 
– 12b: 97.70% 
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Energy-efficient implementation of ANNs: LeNet 
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• Complex real-world problem 
• Convolutional LeNet NN 
• 278,104 multiplications in 6 layers 
• 73k training images 
• 26k testing images 
• Approximation introduced in L1,L3,L5 

and L6 layers 
• Initial classification accuracy:  

– 8b: 86.85% 
– 12b: 86.90% 

 

Input image
32x32 6@28x28 6@14x14 16@10x10 16@5x5 120@1x1 10 values

L1 – Convolutional
117,600 multiplications

L2 – Subsampling
4,704 multiplications

L3 – Convolutional
150,000 multiplications

L4 – Subsampling
1,600 multiplications

L5 – Convolutional
3,000 multiplications

L6 – Fully connected
1,200 multiplications



Energy-efficient implementation of ANNs: Summary 

55 Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 
ICCAD 2016 
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Approximation error ε of multipliers 

Classification Accuracy and power reduction (in multiplication) 

MNIST w=8
MNIST w=12
SVHN w=8
SVHN w=12

Multiplierless multiplication  by 
Sarwar et al. DATE’2016 
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Library of approximate 8 bit adders and multipliers 
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• Parallel multi-objective CGP:  
• CGP + Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Hrbáček, GECCO 

2015] 

• Parallel implementation: vectorized, multi-threaded, multiple islands 
(computer cluster employed) 

• Constraints: worst case error, worst case relative error 
• Initial population: a set of fully working conventional circuits 
• Fitness: mean relative error, power consumption, delay 

 

Target circuits - Inputs: Ni = 16; Outputs: No = 9 (adders), 16 (multipliers) 

O(i)  is the i-th circuit output 
i = 1 … 2Ni 
 



CGP parameters 
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• Population size: 500 candidate circuits 
• Generations: 100k 
• Mutation: 5% 
• Parallel CGP: 10 islands exchanging circuits every 1000 

generations (120 cores) 
• CGP array: 1 x 200 nodes (adders), 1 x 1000 nodes (mult.) 
• CGP function set (180 nm technology library):  

• BUF, INV, AND2, OR2, XOR2, NAND2, NOR2, XNOR2, NAND3, NOR3, 
MUX2, AOI21,OAI21, Full Adder, Half Adder 

• 3-input/2-output nodes used 

 



CGP: Initial population 
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Architecture Power Area Delay 

Ripple-Carry Adder 100.00% 100.00% 100.00% 

Carry-Select Adder 201.18% 174.78% 61.15% 

Carry-Lookahead Adder 414.74% 334.78% 61.99% 

HVTA (Brent-Kung) 286.00% 201.74% 68.52% 

HVTA (Han-Carlson) 286.00% 201.74% 68.52% 

HVTA (Kogge-Stone) 371.48% 257.39% 59.77% 

HVTA (Sklansky)  305.07% 215.65% 60.45% 

TA (Brent-Kung) 282.99% 201.74% 67.25% 

TA (Han-Carlson) 295.74% 212.17% 61.87% 

TA (Knowles) 362.25% 257.39% 59.94% 

TA (Kogge-Stone) 342.20% 243.48% 57.68% 

TA (Ladner-Fischer) 282.99% 201.74% 67.25% 

TA (Sklansky) 298.34% 212.17% 57.84% 

13 conventional 8-bit adders 
TA = Tree Adder 
HVTA = Higher Valency Tree Adder 

Architecture Power Area Delay 

Ripple-Carry Array 100.00% 100.00% 100.00% 

Carry-Save Array using RCA 102.30% 100.00% 71.16% 

Carry-Save Array using CSA 108.42% 106.16% 62.03% 

Wallace Tree using RCA 104.29% 107.39% 68.91% 

Wallace Tree using CLA 116.10% 148.48% 51.26% 

Wallace Tree using CSA 120.12% 122.35% 53.28% 

6 conventional 8-bit multipliers 
RCA = Ripple-Carry Adder 
CSA = Carry-Save Adder 
CLA = Carry-Lookahead Adder 



Library of 8-bit approx. adders and multipliers 
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• Large library of approximate arithmetic circuits 
• 430 non-dominated adders (evolved from 13 accurate adders) 
• 471 non-dominated multipliers (evolved from 6 accurate multipliers) 

 

V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina: EvoApprox8b: Library, DATE 2017, p. 1-4 
KIT: M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel: A low latency generic accuracy configurable adder, DAC 2015, pp. 86:1–86:6. 

Approximate adders 
(100% is Ripple-Carry Adder) 

Approximate multipliers 
(100% is Ripple-Carry Array Multiplier) 



Library of 8-bit approx. adders and multipliers 
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http://www.fit.vutbr.cz/research/groups/ehw/approxlib/ 

Approximate adders (430), exact adders (43) 

Approximate multipliers (471), exact multipliers (28) 

………………………………………………………………………………………………………………………………………………… 

………………………………………………………………………………………………………………………………………………… 

Synthesis results for 45 nm and 180 nm technology (Cadence Encounter RTL 
Compiler), 7 error metrics 



Tutorial Outline 
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• Approximate Computing 
– Motivation 
– Error resilience  
– Sensitivity analysis and error metrics 
– Overview of approximation techniques 

• Evolutionary algorithms and genetic improvement 
• EA in SW approximations 

– Extension of Java - ExpAX 
– Median  

• EA in HW approximations 
– Approximations at the hardware description language level 
– Approximate multipliers in ANN 
– Library of approximate components 

• Formal relaxed equivalence checking in approximate computing 
– Binary decision diagrams 
– Approximate circuits with formal error guarantees 

• Conclusions 
 
 

 



Are F1 and F2 functionally equivalent? 

62 

x3 x2 x1 F1 F2 

0 0 0 1 1 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 1 0 0 

• Functional equivalence checking methods have been developed for decades. 
‒ They exploit the model canonicity, SAT solving, algebraic approaches, … 

• Relaxed functional equivalence checking is a new topic! 
‒ How to prove the equivalence up to some bound? 

• Scalability problem of (relaxed) equivalence checking! 

𝐹2 = ¬ ¬(𝑥1 ∧ ¬𝑥2) ∧ 𝑥3  

𝐹1 = (𝑥1 ∧ ¬𝑥2) ∨ ¬𝑥3 



How to determine the error? 
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Error “estimation” 
• Simulation 
• Probabilistic models, e.g. Li at al., DAC 2015 

 

All possible 
input vectors 

Approximate  
circuit 

1.3% 4.5% 

Error = 3.1% 

Exact error calculation  
• Exhaustive Simulation – small problem instances only 
• Analysis of Binary decision diagrams 

• Average error, worst case, error rate …  
• M. Soeken, D. Grosse, A. Chandrasekharan, and R. Drechsler: BDD  

minimization for approximate computing, ASP-DAC 2016 
• Average Hamming distance: 

• Z. Vasicek and L. Sekanina: Circuit approximation using single- and 
multi-objective cartesian GP. Gen. Prog. Evol. Mach., 17(2), 2016 

• Not scalable for some problems such as multipliers 
• Transforming to SAT problem 

• Worst case error 
• S. Venkataramani et al. : SALSA: systematic logic synthesis of 

approximate circuits, DAC 2012 

 



Binary Decision Diagrams 

64 

1 edge 
0 edge 

a  b  c    f  
0  0  0   0 
0  0  1   0 
0  1  0   0 
0  1  1   1 
1  0  0   0 
1  0  1   1 
1  1  0   0 
1  1  1   1 

Truth table 

f = ac + bc 

Decision tree 

1 0 0 0 1 0 1 0 

a 

b 

c 

b 

c c c 

f 

1 0 

a 

b 

c 

f= (a+b)c 

Reduced Ordered 
BDD (ROBDD) 
(canonical form) 

Operations over (RO)BDDs implemented by many libraries, e.g. Buddy. 



• Variable ordering is important, may result in a more complex (or 
simple) BDD. 

Pitfalls of Binary Decision Diagrams 
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x1 

x3 

x4 

0 1 

x2 

x1x2 + x3x4 

x1<x2<x3<x4  
(optimal) x1<x3<x2<x4 

x1 

x3 

x4 

0 1 

x2 

x3 

x2 



The decision procedure is 
trivial and reduces to 
pointer comparison. 

Equivalence checking using ROBDDs 
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F1 

F2 

G1 

G2 

4 

6 

7 

8 
9 

10 

5 

ROBDD construction:  
Apply (op, a, b) – creates ROBDD representing 
logic function op over two ROBDDs a and b 

Are circuits C1 and C2 
functionally equivalent? 



• Many logic operations can be performed efficiently on BDDs 
– usually linear in size of result  
– tautology and complement are constant time 

 

Other operations on ROBDDs 

67 
Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Comp. 1986 



Hamming distance using BDDs 
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• Create ROBDD for the parent circuit CA, the 
offspring circuit CB and the XOR gates.  

• Average Hamming distance:  

 

SatCount(z1) = 2 
SatCount(z2) = 0 

SatCount (f) – gives the 
number of input 
assignments for which f is 
‘1’. 

 

x1 x2 x3 x4 # combinations 

0 0 0 0 1 

0 1 1 0 1 

𝑒𝐻𝐷 =
1

2𝑖𝑛𝑝𝑢𝑡𝑠  𝑆𝑎𝑡𝐶𝑜𝑢𝑛𝑡(𝑧𝑖)
𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑖=1

 

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



Circuit approximation with CGP and BDD 
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• Three criteria 
• relative area, delay and error  
• Error is the average Hamming distance (10 target error values Ei = 0.1 … 0.9 %) 

• CGP parameters 
• Rows = 1; Columns = # of gates in the original circuit 
• 5 mut./chromosome, O = 5, 30 min/run, 10 independent runs 
• Function set (relative area): and (1.333), or (1.333), xor (2.0), nand (1.0), nor (1.0), 

xnor (2.0), buf (1.333), inv (0.667) 

• Two stages: 
• Find a circuit showing Ei , but a small (< 5%) imperfection tolerated 

• weight fitness (error / area / delay): (we; wa; wd) = (0.12; 0.5; 0.38) 
 (but the error still kept under 5% of Ei) 

• 16 benchmark circuits 
 

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



CGP with BDD in the fitness function: Example 
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error/delay only 

single run 

error/area only 

global 
Pareto front 

Properly optimize before doing approximations! 

� Clmb (bus interface): 46 inputs, 33 outputs 
� Original clmb: 641 gates, 19 logic levels, |BDD| = 6966, |BDDopt| = 627 (SIFT in 2.3 s) 
� Optimized by CGP (no error allowed):  

� Best: 410 gates, 12 logic levels -- in 29 minutes (2.9 x 106 generations) 
� Median: 442 gates, 13 logic levels 

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 



Average-case error analysis 
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• Let 𝑓: ℬ𝑛 → ℬ𝑚 be a Boolean function that describes correct 
functionality and 𝑓 : ℬ𝑛 → ℬ𝑚 an approximation of it. The 
average-case error is defined as the sum of absolute differences 
in magnitude between the original and approximate circuit, 
averaged over all inputs: 
 
 
 
where int x  represents a function returning a decimal value of 
the m-bit binary vector x. 

• No practically useful method  capable of establishing the 
average-case error using a SAT-based solver has been proposed 
up to now. The BDDs seem to be the only viable option how to 
calculate this error metrics. 

𝑒𝑎𝑣𝑔 𝑓, 𝑓 =
1
2𝑛  | int 𝑓 𝑥 − int(𝑓 𝑥 ) 

∀𝑥∈ℬ𝑛

| 

 



Average-case error analysis using BDD  

72 
VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017 

Approximate adder 

Accurate adder 
CGP in approximate 16 bit adder design 

m = n + 2 
Example for n = 4: Because  the 
result of SUB is -32 … +31, the 
max  absolute value is 32 and 6 
bits are needed for m.  



The average time needed to perform the worst-case and the average-case error 
analysis for w-bit adders: 

BDD vs exhaustive simulation 
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bit-width inputs 
parallel simulation BDD-based method speedup 

emax + eavg   emax eavg   emax eavg   

4-bit 8 4.5 us 10.3 us 14.0 us 0.43 u 0.32 u 
8-bit 16 1.9 ms 3.5 ms 4.6 ms 0.54 u 0.42 u 

12-bit 24 682.4 ms 127.9 ms 312.7 ms 5.33 u 2.18 u 
16-bit 32 140.9 s 1.38 s 2.93 s 102.3 u 48.09 u 

Notes  
1) More than 100 randomly generated approximate adders were evaluated for each bit-width.  
2) Time required to construct a BDD for a virtual circuit is included. 

VASICEK Z., MRAZEK V., SEKANINA  L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017 



• Approximate 16 bit multipliers created using different methods 
• PDP = Power Delay Product 

Is the search-based approximation competitive? 
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16-bit approximate multipliers 

16-bit mul. constructed 
from 2-bit mults. 

16-bit mul. constructed 
from 8-bit mults. 

Evolved 16-bit mult. 

Vasicek Z.: DDECS 2017, Tutorial 



List of the most complex arithmetic circuits that were successfully approximated 
and whose error is formally guaranteed. 

Approx. circuits with formal error guarantees 
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Aprox. circuit ewst eavg eprob ebf ewstac eHD method paper authors conference 

32-bit adder 
!analysed only! 

X BDDs MACACO: Modeling and Analysis of Circuits for  
Approximate Computing 

Venkatesan, Agarwal, Roy, 
Raghunathan 

ICCAD 2011 

8-bit multiplier X BDDs MACACO: Modeling and Analysis of Circuits for  
Approximate Computing 

Venkatesan, Agarwal, Roy, 
Raghunathan 

ICCAD 2011 

8-bit multiplier X X X simulation Evolutionary Design of Approximate Multipliers Under 
Different Error Metrics 

Vasicek, Sekanina DDECS 2014 

64-bit adder X BDDs Analyzing Imprecise Adders Using BDDs - A Case Study Yu,  Ciesielski ISVLSI 2016 
16-bit adder X SAT, bin 

search 
Approximation-aware Rewriting of AIGs for Error 
Tolerant Applications 

Chandrasekharan, Soeken, 
Grosse, Drechsler 

ICCAD 2016 

16-bit adder X BDDs Approximation-aware Rewriting of AIGs for Error 
Tolerant Applications 

Chandrasekharan, Soeken, 
Grosse, Drechsler 

ICCAD 2016 

16-bit adder X PDR Precise Error Determination of Approximated 
Components in Sequential Circuits with Model Checking 

Chandrasekharan, Soeken, 
Grosse, Drechsler 

DAC 2016 

8-bit ALU c3540 X BDDs BDD Minimization for Approximate Computing Soeken, Grosse, 
Chandrasekharan, Drechsler 

ICCAD 2016 

12-bit multiplier X X simulation Design of power-efficient approximate multipliers for 
approximate artificial neural networks 

Mrazek, Sarwar, Sekanina, 
Vasicek, Roy  

ICCAD 2016 

8-bit mutiplier X X X X X simulation Automatic Design of Approximate Circuits by Means of 
Multi-Objective Evolutionary Algorithms 

Hrbacek, Mrazek, Vasicek DTIS 2016 

16-bit adder X X BDDs  Towards Low Power Approximate DCT Architecture for 
HEVC Standard 

Vasicek,Mrazek,Sekanina DATE 2017 

Vasicek Z.: DDECS 2017, Tutorial 



• Approximate computing is a hot topic! 
– It addresses one of the most critical challenges of our society -- energy efficiency. 

• The roots of approximate computing: 
– energy-efficient computing is needed 
– high variability in current/future technology nodes 
– many applications are error resilient 

• The approximation problem can be formulated as a multi-objective 
design/optimization problem  
– A holistic approach is needed. 
– A great opportunity for EAs! 

• Current use of EA in Approximate computing 
– Optimization tasks (selection of types, variables, …) 
– Genetic improvement (with errors enabled) 
– Evolutionary design from scratch 

 
 

Conclusions 
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• See references on particular slides 
• Selected tutorial and survey papers on Approximate Computing 

– J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for 
energy-efficient design,” in Proc. of the 18th IEEE European Test Symposium. IEEE, 
2013, pp. 1–6 

– H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, “Neural acceleration for general-
purpose approximate programs,” Commun. ACM, 58(1): 105-115, 2015 

– S. Mittal, “A survey of techniques for approximate computing,” ACM Computing 
Surveys, 48(4), 1–34, 2016. 

– Q. Xu, T. Mytkowicz, N. S. Kim. “Approximate Computing: A Survey,” IEEE Design 
and Test, 33(1), 8-22, 2016. 

– L. Sekanina, “Introduction to Approximate Computing” (embedded tutorial). IEEE 
International Symposium on Design and Diagnostics of Electronic Circuits, DDECS 
2016 

– Z. Vasicek, “Relaxed equivalence checking: a new challenge in logic synthesis” 
(embedded tutorial). IEEE International Symposium on Design and Diagnostics of 
Electronic Circuits, DDECS 2017  
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