
Lukáš Sekanina
Faculty of Information Technology, Brno University of Technology

Brno, Czech Republic
sekanina@fit.vutbr.cz

Approximate Computing:
An Evolutionary Computing Perspective

(Tutorial at IEEE CEC 2017)

• Theoretical computer science
– polynomial time approximation algorithms to find approximate solutions

to NP-hard optimization problems
• Stringology, bioinformatics

– approximate string matching
• Bio-inspired models in AI

– approximation of functions using artificial neural networks
• Mathematics

– approximation of functions; numerical mathematics
• Computer engineering

– FP numbers, computer arithmetic, …
– S. H. Nawab et al.: Approximate Signal Processing, Journal of VLSI Signal

Processing , vol. 15, pp. 177-200, Jan. 1997.

The notion of approximation is well known in …

2

Why Approximate Computing again?

• Search for "approximate computing" in articles by Google Scholar
(April, 2017)

Approximate computing (AC) in literature

3

0
100
200
300
400
500
600
700

2009 2010 2011 2012 2013 2014 2015 2016 2017

Search for "approximate computing"

0

20

40

60

80

100

2009 2010 2011 2012 2013 2014 2015 2016 2017

Search for "approximate computing"
in the title of the article

0
2
4
6
8

10
12
14
16

2010 2011 2012 2013 2014 2015 2016 2017

Search for "approximate adder" and
"approximate multiplier" in the title of

the article

approximate multiplier approximate adder

• Approximate Computing
– Motivation
– Error resilience
– Sensitivity analysis and error metrics
– Overview of approximation techniques

• Evolutionary algorithms and genetic improvement
• EA in SW approximations

– Extension of Java - ExpAX
– Median

• EA in HW approximations
– Approximations at the hardware description language level
– Approximate multipliers in ANN
– Library of approximate components

• Formal relaxed equivalence checking in approximate computing
– Binary decision diagrams
– Approximate circuits with formal error guarantees

• Conclusions

Tutorial Outline

4

The end of Dennard scaling

5

Power density (power consumption per chip area) remained
acceptable from one technology node to another even with
increasing frequency (based on data for common processors).

The end of Dennard scaling

Kirk M. Bresniker et al. “Adapting to
Thrive in a New Economy of Memory
Abundance”, Computer, 48, 2015.

Moore’s law will
survive next 10-15
years (ITRS).

• Energy efficiency and dark silicon
– High performance & low power computing is

requested (Big data processing in data centres;
Mobile electronics with limited power budget)

• Variability issues
– Many “unreliable” components on a chip

fabricated with modern process technologies
(Limited use of fault tolerant mechanisms
because they are expensive; Reliable computing
with unreliable components)

• Error resilience
– Many applications are error-resilient.

(We are willing to tolerate errors.)

Roots of the new interest in AC

6

0% 20% 40% 60%

Servers
Power (distribution,…

Networking equipment
Other infrastructure

Data centers - monthly costs

Gupta, Accelerating Datacenter Workloads
Intel, FPL 2016

22nm MOSFET (line-edge and surface
roughness, random dopant fluctuations
=> threshold voltage variation)

60% instructions golden solution

• Typical machine learning, signal processing and document processing
applications have a mix of resilient and sensitive computations.

• Chippa, 2013: 83% runtime spent in computations (such as matrix and vector
operations) that can be approximated.

Error resilience

7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Document Search
Image Search

Hand-writ. Digit Classification
Hand-writ. Digit Model Train.

Eye Detection
Eye Model Generation

Image Segmentation
Census Data Modeling

Census Data Classification
Nutrition and Health Inf. Analysis

Digit Recognition
Online Data Clustering

% Runtime in resilient kernels

0% 20% 40% 60% 80% 100%

Dot Product Computation
Dot Product Computation
Dot Product Computation
Dot Product Computation

Distance Computation
Distance Computation
Distance Computation

Matrix Vector Multiplication
Matrix Vector Multiplication

Dot Product Computation
Distance Computation
Distance Computation

Dominant resilient kernel (% runtime)

Chippa, et al. Analysis and characterization of inherent application resilience for approximate computing , DAC 2013

• Applications with analog inputs
– image processing, sensor data processing, voice

recognition, etc., that operate on noisy real-world data.
They are inherently resilient to some noise.

• Applications with analog output
– multimedia, image rendering, sound synthesis, etc. The

output is intended for human perception and can
inherently tolerate errors imperceptible to users.

• Applications with no unique answer
– web search, machine learning, autonomous agents, etc.,

which do not offer a unique answer and multiple possible
answers are acceptable.

• Iterative and convergent applications
– data analytics and numerical computations that iteratively

process large amounts of data. They often sample data,
stop the convergence procedure early, or apply
approximate heuristics.

The origin of resilience

8 Esmaeilzadeh et al.: COMM. OF THE ACM, 59(1), 2015

• The concept of approximate computing has been developed in
different ways and at various levels of computing stack (circuit,
component, memory, processor, compilers, applications, …)

• Software-level approximations
– Extensions of general purpose languages (Java, Verilog) to support

approximations in data types, operators, … e.g. EnerJ, Axilog, ExpAx …
– Neural network replaces general purpose code [Esmaeilzadeh el al., 2013]

• Specialized processors supporting approximate computing
– Improving Efficiency of Extensible Processors by Using Approximate

Custom Instructions [Kamal et al., 2014]
• Circuit approximation

– over-scaling based approximations
– functional approximations

• Memory approximation
– approximations in memory cells, organization, access, hierarchy …

Approximate computing

9

What is Approximate computing?

10

“Approximate computing exploits the gap between the
level of accuracy required by the applications/users and
that provided by the computing system, for achieving
diverse optimizations.”
 [Mittal S., ACM Computing Surveys 2016]

“The requirement of exact numerical or Boolean
equivalence between the specification and
implementation of a circuit is relaxed in order to
achieve improvements in performance or energy
efficiency.”
 [Venkatesan et al., 2011]

“Computing efficiently by producing results that are
good enough or of sufficient quality.”
 [Venkataramani et al., DAC 2015]

• Approximations are conducted across the whole computer stack:
– Circuit
– Component
– Memory
– (Parallel) Processor architecture
– Algorithm
– Compiler
– Operating system
– Application

• A holistic approach is needed to find the best trade-off between
error, power and performance at the global (system) level.

• AC reduced energy requirements of many applications: image
processing, video processing, deep neural networks, …

Approximate computing as a new paradigm

11

A great opportunity for EAs!

Sensitivity analysis

12

• The goal is to identify subsystems suitable for undergoing the approximation.
• Method: Random/guided modification of the original implementation and

statistical evaluation of the impact on the quality of result.
In software
• precision of number representation
• data storage strategies
• code simplification
• relaxed synchronization
• unfinished loops
• skipped function calls

In hardware
• bit width reduction
• intentional disconnecting of

components
• timing changes
• power supply voltage changes
• fault injection

Chippa et al., ACSSC 2013

• Arithmetic error metrics
– The worst-case error

(error magnitude, error significance)
– Relative worst-case error
– The average-case error

(average error magnitude, mean
error distance)

• Generic error metrics
– Error probability (error rate)
– Maximum Hamming distance

(bit-flip error)
– Average Hamming distance

• Application-specific error metrics
– Distance error
– Accumulated worst-case error and

accumulated error rate

Error metrics used in approximate computing

13

𝑒𝑤𝑠𝑡 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛 | int 𝑓 𝑥 − int(𝑓 𝑥) |

𝑒𝑟𝑒𝑙 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛

| int 𝑓 𝑥 − int(𝑓 𝑥) |
int(𝑓 𝑥)

𝑒𝑎𝑣𝑔 𝑓, 𝑓 =
1
2𝑛 | int 𝑓 𝑥 − int(𝑓 𝑥)

∀𝑥∈ℬ𝑛

|

𝑒𝑝𝑟𝑜𝑏 𝑓, 𝑓 =
1
2𝑛 𝑓 𝑥 ≠ 𝑓 (𝑥)

∀𝑥∈ℬ𝑛

𝑒𝑏𝑓 𝑓, 𝑓 = max
∀𝑥∈ℬ𝑛 𝑓𝑖 𝑥 ⊕ 𝑓 𝑖(𝑥)

𝑚−1

𝑖=0

𝑒ℎ𝑑 𝑓, 𝑓 =
1
2𝑛 𝑓𝑖 𝑥 ⊕ 𝑓 𝑖(𝑥)

𝑚−1

𝑖=0∀𝑥∈ℬ𝑛

f, 𝑓 – original and approximate solution
n, m – the number of inputs and outputs
int – returns a decimal value from m bits

Approximation techniques - examples

14

• precision scaling
• loop perforation
• load value approximation
• memorization
• task dropping/skipping
• memory access skipping
• data sampling
• using different program

(circuit) versions

• using inexact or faulty
hardware

• voltage scaling
• refresh rate reducing
• inexact read/write
• reducing divergence in

GPUs
• lossy compression
• use of neural networks.

Mittal S., ACM Computing Surveys, 2016

SW approximation: Code replaced by ANN

15 Esmaeilzadeh et al.: COMM. OF THE ACM, 59(1), 2015

• Principle: To implement a slightly different function that leads to
energy/delay/area reduction but a non-zero error.

Functional approximation

16

F(x) F’(x)

Power: 193 uW
Delay: 10 ns
Area: 35um2

Power: 100 uW
Delay: 5 ns
Area: 20 um2

Error: 5%

Traditional view Approximate computing

Functional equivalence
is requested between the specification

and implementation at all levels.
Error as a design metric!

Relaxed functional equivalence

A complex multi-objective design/optimization problem!

Languages supporting approximate computing

17

• EnerJ [Sampson et al., PLDI 2011]
– An extension to Java that adds approximate data types.
– Approximate data can be processed more cheaply but less reliably.
– Approximate operations by generating code with cheaper approximate instructions.
– The system can statically guarantee isolation of the precise program component from

the approximate component.
• Rely [Carbin et al., OOPSLA 2013]

– Programmer can mark both variables and operations as approximate.
– Rely works at the granularity of instructions and symbolically verifies whether the

quality-of-result requirements are satisfied for each function.
– Rely requires programmer to provide preconditions on the reliability and range of the

data
• Axilog [Yazdanbakhsh et al., DATE 2015]

– A set of language annotations that provide the necessary syntax and semantics for
approximate hardware design and reuse in Verilog.

– Axilog enables the designer to relax the accuracy requirements in certain parts of the
design, while keeping the critical parts strictly precise.

• Others: ExpAX, Chisel, …
• They require a hardware (CPU) supporting approximate computing

Quality programmable processors: Concept

18

Example: Quora is an experimental quality configurable vector processor with 289 processing
elements in 45 nm technology [Venkataramani et al. Micro 46, 2013]

Timing induced approximations

19

• Design techniques
¾ over-clocking
¾ voltage over-scaling

path delay

of

 p
at

hs
 delay target

Pdyn = CVdd2 f

Vdd = 1.2V

path delay

of

 p
at

hs
 Vdd = 1.2V

f o 2f
Timing
errors

nspeed

path delay

of

 p
at

hs
 delay target Vdd = 0.9V Timing

errors

ppower

• Power reduction tricks
¾ Assume: Accurate circuit D1 at

frequency f1

¾ D1 is approximated to D2 which
can work at higher freq. f2 (f2 > f1)

¾ But, D2 is operated at f1 with
lower Vdd => power saving

Courtesy of K. Roy

• Approximate Computing
– Motivation
– Error resilience
– Sensitivity analysis and error metrics
– Overview of approximation techniques

• Evolutionary algorithms and genetic improvement
• EA in SW approximations

– Extension of Java - ExpAX
– Median

• EA in HW approximations
– Approximations at the hardware description language level
– Approximate multipliers in ANN
– Library of approximate components

• Formal relaxed equivalence checking in approximate computing
– Binary decision diagrams
– Approximate circuits with formal error guarantees

• Conclusions

Tutorial Outline

20

Evolutionary algorithms: GA, GP, LGP, CGP, GE …

21

GP: syntax trees

(0, 2, 2) (0, 1, 0) (1, 3, 2)(3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8)

GA: vectors of parameters

GE: grammatical evolution

LGP: machine level code

Cartesian GP: Directed acyclic graphs

cf. HeuristicLab

Cartesian Genetic Programming (CGP) [Miller, 1999]

22

• ni primary inputs
• no primary outputs
• nc columns
• nr rows

ni

ni+1

ni+nr-1

ni+nr

ni+nr+1

ni+2nr-1

ni+(nc-1)nr

• na inputs of each node
• * function set
• L-back parameter

ni+ncnr-1

nr

nc

0

1

ni-1

ni no

Nodes in the same
column are not allowed
to be connected to
each other.
No feedback!

a

b
g(a,b)

CGP: Representation for logic networks

23

Genotype (netlist):
na+1 integers per node; no integers for outputs;
Constant size: ncnr(na + 1) + no integers

Phenotype (directed acyclic graph � circuit):
Variable size; unused nodes are ignored.

• CGP parameters
• nr=3 (#rows)
• nc = 3 (#columns)
• ni = 3 (#inputs)
• no = 2 (#outputs)
• na = 2 (max. arity)
• L = 3 (level-back

parameter)
• *= {NAND(0), NOR(1),

XOR(2), AND(3), OR(4),
NOT (5)}

CGP: Fitness function for circuit design

24

target table:

Specification
(1-bit adder),

Typical fitness function (circuit functionality):

𝑓 = |𝑦𝑖

𝐾

𝑖=1

− 𝑤𝑖|

Circuit response

Desired response

The number of test vectors

K = 2inputs for combinational circuits. Not scalable!!!

Additional objectives:
• area (the number of gates)
• delay
• power consumption etc.

CGP: Mutation-based search

25

mutation

• Mutation: Randomly select h integers and replace them by randomly
generated (but legal) values:

(for full adder)

CGP: Search algorithm (1 + O)

26

• Why EA in AC?
– In AC, partially working solutions are sought.
– In EA, partially working solutions are improved.
– EAs are excellent in multi-objective design and optimization.
– Constraints can easily be handled.
– EA can be seeded with the original code (circuit).

• Is AC similar to Genetic improvement?
– Genetic improvement (of existing SW/HW) is the application of

evolutionary and search-based optimization methods with the aim
of improving functional and/or non-functional properties of existing
software/hardware

Why EA in Approximate computing?

27

• automatic bug fixing (real bugs in real C programs)
– W. Weimer, et al. Automatic program repair with evolutionary computation. Communications of the ACM,

vol. 53, no. 5, pp. 109–116, 2010.

• an improved version of C++ code from multiple versions of a program written
by different domain experts (e.g. improved MiniSAT)

– J. Petke, et al. Using genetic improvement and code transplants to specialise a C++ program to a problem
class. In 17th European Conference on Genetic Programming, LNCS, vol. 8599. Springer, 2014, pp. 137–149

• improved CUDA programs (DNA analysis SW)
– W. Langdon. Improving CUDA DNA Analysis Software with Genetic Programming. In Genetic and

Evolutionary Computation Conference (GECCO 2015): 1063-1070

• Bowtie2, a widely-used DNA sequencing system, consisting of 50k lines of C++
code, was reduced by GI to 20k lines of code; with an average 70 times faster
execution than the original code

Genetic improvement of SW: Examples

28

- W. Langdon and M. Harman: IEEE Tr. on
 Evol. Computing. 19(1), 2015

Genetic improvement vs. Approximate computing

29

er
ro

r

power

acceptable
error

approximate computing

initial solution

genetic improvement

The Genetic improvement method does not usually accept
solutions increasing the error (w.r.t the original implementation)
In AC, genetic improvement can tolerate some errors.

• Evolutionary optimization
– optimization of the data type (bit width) to variable assignment - in

the source code (e.g. GRATER)
– selection of operations to be approximated – in the source code

(e.g. ExpAX)
• Genetic improvement with errors enabled

– existing solutions (SW or HW) are approximated by GP to get a
suitable trade-off between error and power/performance (e.g.
ABACUS, EvoApprox8b, …)

• Evolutionary design (from scratch)
– GP is used to evolve desired approximate solutions from scratch

(e.g. CGP in the multipliers approximatio, median, image filter …)

How are EAs used in Approximate computing?

30

Tutorial Outline

31

• Approximate Computing
– Motivation
– Error resilience
– Sensitivity analysis and error metrics
– Overview of approximation techniques

• Evolutionary algorithms and genetic improvement
• EA in SW approximations

– Extension of Java - ExpAX
– Median

• EA in HW approximations
– Approximations at the hardware description language level
– Approximate multipliers in ANN
– Library of approximate components

• Formal relaxed equivalence checking in approximate computing
– Binary decision diagrams
– Approximate circuits with formal error guarantees

• Conclusions

SW approximation

32

• ExpAX
– A new programming framework that employs error expectations.
– HW/CPU supporting approximate computing is assumed.
– A static safety analysis is performed that uses the high-level expectations to

automatically infer a safe-to-approximate set of program operations

Software is annotated in order to introduce approximations

ExpAX: A Framework for Automating Approximate Programming, SCS Technical Report, GT-CS-14-05, Georgia Institute of Technology, July, 2014

SW approximation: GA in ExpAX

33

• Programming model with expectations (v
is variable)

– accept rate(v) < 0.2
– accept magnitude(v) > 0.9 with rate < 0.3

• Finding possible safe-to-approximate
variables

– Unsafe-to-approximate variables are
variables violating memory safety or
functional correctness

• GA used to find a subset of safe-to-
approximate operations

– Fitness = min. (W1.error + W2.energy)
– Chromosome: a bit vector representing a

subset (approximate (‘0’) or precise(‘1’))
• Greedy algorithm used to refine the GA

result.
• Significant energy savings (up to 35%) with

large reduction in programmer effort (3x
to 113x less annotations w.r.t EnerJ) while
providing formal safety and statistical
quality-of-result guarantees.

ExpAX: A Framework for Automating Approximate Programming, SCS Technical Report, GT-CS-14-05, Georgia Institute of Technology, July, 2014

Approximate HW

Example

Median in image filters

34

filtered image
(9-input exact median filter)

corrupted image
(10% pixels, impulse noise)

original

9-input median function

35

pixelvalue opt_med9 (pixelvalue * p)
{
 PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
 PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;
 PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
 PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;
 PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ;
 PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;
 PIX_SORT(p[4], p[2]) ; return(p[4]) ;
}

Source: http://ndevilla.free.fr/median/median.pdf

#define PIX_SORT(a,b) {
 if ((a)>(b))
 PIX_SWAP((a),(b));
}

Approximate median using CGP

36

Cartesian Genetic Programming (CGP) for median approximation
• Median network (consisting of up to N operations) is represented by means of

an one-dimensional array of N nodes.
• Each node can act as: identity (0), minimum (1), maximum (2)
• Each candidate solution is encoded using 3N + 1 integers.
• Fitness function (single objective)

e𝑟𝑟𝑜𝑟 = 𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑖 − 𝑂𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)
𝑖∈𝑆

• Example for 3-input median:

Chromosome: 0, 2, 3; 3, 2, 0; 0, 2, 2; 5, 3, 1; 6, 1, 2; 7, 0, 0; 6, 8, 2; 8

Approximate median using CGP

37

Experimental setup
• (1+4)-ES, no crossover, 5 % of the chromosome mutated

Median-9 Median-25

Inputs 9 25

Outputs 1 1

Generations 3 × 106 (3 hours) 3 × 105 (3 hours)

Training vectors 1 × 104 1 × 105

Reference (exact) solution 38 operations 220 operations

Number of nodes 6 – 34 operations 10 – 200 operations

60% operation 20% operations original

Approximate median: Quality

38

9-input median
fully-working: 38 operations

25-input median
fully-working: 220 operations

21% reduction

52% reduction

84% reduction

4.8%

95.2%

65.1%

24.6%

20.2% 13.4%
1.2%

23.8% 19.4%
12.3% 5.5%

14.3%

27% reduction

54% reduction

81% reduction

94.4%

45.9%

19.0%

Approx. 9-median as SW for microcontrollers

39

#define PIX_SORT(a,b) {
 if ((a)>(b))
 PIX_SWAP((a),(b));
}

ops = operations in the source code.

V. Mrazek, Z. Vasicek and L. Sekanina. GECCO GI Workshop, 2015

fully-working median

4.8% error prob.,
max. error dist. 1
21% power reduction

34.9% error prob.,
max. error dist. 2
52% power reduction

• Key idea: reduce the number of compare-and-swap operation in
sorting networks to improve energy-efficiency

• To model the error introduced by the approximations in sorting
networks, the distance between the rank of the returned element and
rank given by the specification is measured.

Energy-efficient implementation of sorting networks

MRAZEK V., VASICEK Z.: Automatic Design of Arbitrary-Size Approximate Sorting Networks with Error Guarantee. In: PATMOS
2016, pp. 221-228
VASICEK Z., MRAZEK V.: Trading between Quality and Non-functional Properties of Median Filter in Embedded Systems. Genetic
Programming and Evolvable Machines, 2017, 18:45–82

40

power reduction: 52%
error: <14 for 99% cases

16-input sorting network 256-input sorting network

power reduction: 9%
error: <2 for 99% cases

Tutorial Outline

41

• Approximate Computing
– Motivation
– Error resilience
– Sensitivity analysis and error metrics
– Overview of approximation techniques

• Evolutionary algorithms and genetic improvement
• EA in SW approximations

– Extension of Java - ExpAX
– Median

• EA in HW approximations
– Approximations at the hardware description language level
– Approximate multipliers in ANN
– Library of approximate components

• Formal relaxed equivalence checking in approximate computing
– Binary decision diagrams
– Approximate circuits with formal error guarantees

• Conclusions

Functional circuit approximation

42

Design Process

Original design:
gate level / RTL / behavioral

Approximate circuit
𝑒𝑎𝑣𝑔 𝑓, 𝑓 =

1
2𝑛 | int 𝑓 𝑥 − int(𝑓 𝑥)

∀𝑥∈ℬ𝑛

|

Quality metric

• Design methodology
• Manual [Kulkarni et al.: J. Low Power Electronic 2011]

• Automatic (= some heuristics used)
• Heuristic algorithms: SALSA (DAC 2012), SASIMI (DATE 2013), ABACUS

(DATE 2014), ASLAN (DATE 2014), AIG-REV (ICCAD 2016) …
• GP-based methods: CGP (ICES 2013, DDECS 2014, EuroGP 2015, IEEE

Tr. on EC 2015, FPL 2016, GENP 2016), GP (ABACUS with NSGA-II 2017)

• Correct results for 15 out of 16 input combinations (almost 50% area
reduction, lower delay).

• Used as a building block for larger multipliers and then in image processing
applications.

Manual approximation: Multipliers

43

accurate
approximated

Error probability Dynamic power reduction for various frequencies

AxB 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 4 6
3 0 3 6 7

Kulkarni et al. Trading Accuracy for Power in a Multiplier Architecture, VLSI Design, 2011

MSB removed!

• Original file: Verilog
• Abstract Syntax Tree (AST) transformations

(mutations)
– Data type simplification
– Operation transformations (e.g. + -> or)
– Arithmetic expression transformation
– Variable to Constant transformations
– Loop transformations

• Search algorithm: NSGA-II – based
• Fitness is obtained by circuit simulation and

combines the error & power

ABACUS: Approximations at Behavioral RT-level

44 Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017

ABACUS: Results

45 Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017

Benchmark problems:

Results of evolutionary approximation:

GRATER: GA-based optimization of data types

46 Lotfi A. et al.: GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. DATE 2016

• Sensitivity analysis performed to find safe-to-
approximate variables (AV) in OpenCL kernel.

• Chromosome: n integers specifying precision
(i.e. data type) of n variables from AV.

• Objective: to find an approximate kernel that
minimizes the resource utilization on FPGA
while meeting the target quality.

CGP for circuit (functional) approximation

47

• Error-oriented (single-objective) method
• CGP gradually degrades a fully functional circuit

until a circuit with a required error is obtained.
Then, the area (and so power consumption) is
minimized for this error.

Error

Ar
ea

Area

Er
ro

r

• Resources-oriented (single-objective)
method
• CGP is used to minimize the error, but only

limited resources (components) are provided,
insufficient for constructing a fully functional
circuit.

Ar
ea

Pareto
front

Error

• Multi-objective optimization
• All target parameters are optimized together.

Initial circuit
Resulting circuit

Energy-efficient implementation of ANNs

48

Approximations introduced in:
• ANN structure – removing nodes of NN

[Venkataramani et al. ISLPED’14]
• Learning algorithm
• Memory – approximate Load/Store

[Srinivasan et al. DATE’16]

• Pipeline
• Reducing data bit-width

[Judd et al. ICS’16]
• Multiplication (approx. 45% of total power)

Multiplierless multiplication
[Sarwar et al. DATE’16]

• Activation function
[Du et al. ASP-DAC’14]

• Sum function

[Judd et.al. WAPCO’16]

∑wI

I0

I1

In

w0

w1

wn

Activation
function

H1

H2

H3

H4

I1

I2

I3

O1

O2

Hidden layerInput layer Output layer

weights weights

Energy-efficient implementation of ANNs

49

Scenario A:
• Multiplication

𝑚 𝑎, 𝑏 = 𝑎 ⋅ 𝑏 + Δ 𝑎, 𝑏
• Classification accuracy :

10.77%

MNIST dataset classification: 32x32 – 100 – 10 MLP network (classification accuracy
94.16% with accurate implementation). We introduced an approximate multiplier
by adding a jitter function Δ(𝑎, 𝑏), resulting in a 5.2% error for multiplication.

Scenario B:
• 80% of multiplications are by 0
• Multiplication

𝑚′ 𝑎, 𝑏 =
0 𝑖𝑓 𝑎 = 0 ∨ 𝑏 = 0

𝑎 ⋅ 𝑏 + Δ 𝑎, 𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Classification accuracy : 94.20%

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016

CGP in approx. multiplier design for ANNs

50 Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016

Accurate multiplier – initial circuit (6)
• CSAM RCA, CSAM RCA, RCAM, WTM CLA, WTM CSA, WTM RCA

Allowed errors: 𝜀 ∈ {0.5%, 1%, 2%, 5%, 10%, 15%, 20%}

CGP parameters
• 𝑛𝑖 ∈ 14,22 ; 𝑛𝑜 ∈ 14,22 ; 𝑛𝑟 = 1; 250 < 𝑛𝑐 < 780
• Functions: {NOT, AND, NAND, OR, NOR, XOR, XNOR}
• Error constraints:

1. ∀𝑎, 𝑏: 𝑚 𝑎, 𝑏 − 𝑎 ∗ 𝑏 ≤ 𝜀 ⋅ 2𝑛𝑜
2. ∀𝑎: 𝑚 𝑎, 0 = 𝑚 0, 𝑎 = 0

• Fitness function:

𝐶 𝑚 = −𝐺𝑎𝑡𝑒𝑠𝐶𝑜𝑢𝑛𝑡(𝑚) 𝑖𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 1 𝑎𝑛𝑑 (2) 𝑚𝑒𝑡,
−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

CGP in approx. multiplier design for ANNs

51 Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016

• In total, 852 approximate 7-bit and 11-bit multipliers were evolved by
CGP.

• Multipliers were sign-extended using one’s complement.
• The 8-bit and 12-bit multipliers were applied in NNs.
• The NNs were retrained with approximate multiplication operation using

backpropagation algorithm.
• Approximate multipliers showing the best trade off between power and

accuracy in NN were selected (for different error targets).

Evolved approximate multipliers for ANNs

52

0
50

100
150
200
250
300
350
400
450
500

0% 0,50% 1% 2% 5% 10% 15% 20%

Power and area of 8 bit approximate multipliers

PWR μW AREA μm2

0

200

400

600

800

1000

1200

1400

0% 0,50% 1% 2% 5% 10% 15% 20%

Power and area of 12 bit approximate multipliers

PWR μW AREA μm2

Results of synthesis of sign-extended multipliers with Synopsys DC
45 nm technology
Timing:

8-bit multipliers: 2.5 GHz
12-bit multipliers: 2 GHz

Accurate multiplier was implemented in Verilog using standard * arithmetic
operator

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016

Energy-efficient implementation of ANNs: MLP

53

• Handwritten number dataset
(dataset used for benchmarking)

• Fully connected MLP network
• 28x28 inputs, 300 hidden neurons,

10 outputs
• 60k training images
• 10k testing images
• More than 238k multiplications for

approximation
• Initial classification accuracy:

– 8b: 97.67%
– 12b: 97.70%

H1

H2

H3

H4

I1

I2

I3

O1

O2

Hidden layerInput layer Output layer

weights weights

Energy-efficient implementation of ANNs: LeNet

54

• Complex real-world problem
• Convolutional LeNet NN
• 278,104 multiplications in 6 layers
• 73k training images
• 26k testing images
• Approximation introduced in L1,L3,L5

and L6 layers
• Initial classification accuracy:

– 8b: 86.85%
– 12b: 86.90%

Input image
32x32 6@28x28 6@14x14 16@10x10 16@5x5 120@1x1 10 values

L1 – Convolutional
117,600 multiplications

L2 – Subsampling
4,704 multiplications

L3 – Convolutional
150,000 multiplications

L4 – Subsampling
1,600 multiplications

L5 – Convolutional
3,000 multiplications

L6 – Fully connected
1,200 multiplications

Energy-efficient implementation of ANNs: Summary

55 Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016

-9%
-1%

-25%
-20%

-36%
-60%

70%

75%

80%

85%

90%

95%

100%

0% 0.50% 1% 2% 5% 10% 15% 20% {1} {1,3} {1,3,5,7}

Cl
as

sif
ic

at
io

n
ac

cu
ra

cy
 o

f N
N

Approximation error ε of multipliers

Classification Accuracy and power reduction (in multiplication)

MNIST w=8
MNIST w=12
SVHN w=8
SVHN w=12

Multiplierless multiplication by
Sarwar et al. DATE’2016

-20%
-50%

-30%
-43%

(8 bit)
(12 bit) Power -57%

-66%
-77%
-70%

-82%
-85%

-91%
-86%

-91%
-87%

Library of approximate 8 bit adders and multipliers

56

• Parallel multi-objective CGP:
• CGP + Non-dominated Sorting Genetic Algorithm II (NSGA-II) [Hrbáček, GECCO

2015]

• Parallel implementation: vectorized, multi-threaded, multiple islands
(computer cluster employed)

• Constraints: worst case error, worst case relative error
• Initial population: a set of fully working conventional circuits
• Fitness: mean relative error, power consumption, delay

Target circuits - Inputs: Ni = 16; Outputs: No = 9 (adders), 16 (multipliers)

O(i) is the i-th circuit output
i = 1 … 2Ni

CGP parameters

57

• Population size: 500 candidate circuits
• Generations: 100k
• Mutation: 5%
• Parallel CGP: 10 islands exchanging circuits every 1000

generations (120 cores)
• CGP array: 1 x 200 nodes (adders), 1 x 1000 nodes (mult.)
• CGP function set (180 nm technology library):

• BUF, INV, AND2, OR2, XOR2, NAND2, NOR2, XNOR2, NAND3, NOR3,
MUX2, AOI21,OAI21, Full Adder, Half Adder

• 3-input/2-output nodes used

CGP: Initial population

58

Architecture Power Area Delay

Ripple-Carry Adder 100.00% 100.00% 100.00%

Carry-Select Adder 201.18% 174.78% 61.15%

Carry-Lookahead Adder 414.74% 334.78% 61.99%

HVTA (Brent-Kung) 286.00% 201.74% 68.52%

HVTA (Han-Carlson) 286.00% 201.74% 68.52%

HVTA (Kogge-Stone) 371.48% 257.39% 59.77%

HVTA (Sklansky) 305.07% 215.65% 60.45%

TA (Brent-Kung) 282.99% 201.74% 67.25%

TA (Han-Carlson) 295.74% 212.17% 61.87%

TA (Knowles) 362.25% 257.39% 59.94%

TA (Kogge-Stone) 342.20% 243.48% 57.68%

TA (Ladner-Fischer) 282.99% 201.74% 67.25%

TA (Sklansky) 298.34% 212.17% 57.84%

13 conventional 8-bit adders
TA = Tree Adder
HVTA = Higher Valency Tree Adder

Architecture Power Area Delay

Ripple-Carry Array 100.00% 100.00% 100.00%

Carry-Save Array using RCA 102.30% 100.00% 71.16%

Carry-Save Array using CSA 108.42% 106.16% 62.03%

Wallace Tree using RCA 104.29% 107.39% 68.91%

Wallace Tree using CLA 116.10% 148.48% 51.26%

Wallace Tree using CSA 120.12% 122.35% 53.28%

6 conventional 8-bit multipliers
RCA = Ripple-Carry Adder
CSA = Carry-Save Adder
CLA = Carry-Lookahead Adder

Library of 8-bit approx. adders and multipliers

59

• Large library of approximate arithmetic circuits
• 430 non-dominated adders (evolved from 13 accurate adders)
• 471 non-dominated multipliers (evolved from 6 accurate multipliers)

V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina: EvoApprox8b: Library, DATE 2017, p. 1-4
KIT: M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel: A low latency generic accuracy configurable adder, DAC 2015, pp. 86:1–86:6.

Approximate adders
(100% is Ripple-Carry Adder)

Approximate multipliers
(100% is Ripple-Carry Array Multiplier)

Library of 8-bit approx. adders and multipliers

60

http://www.fit.vutbr.cz/research/groups/ehw/approxlib/

Approximate adders (430), exact adders (43)

Approximate multipliers (471), exact multipliers (28)

………

………

Synthesis results for 45 nm and 180 nm technology (Cadence Encounter RTL
Compiler), 7 error metrics

Tutorial Outline

61

• Approximate Computing
– Motivation
– Error resilience
– Sensitivity analysis and error metrics
– Overview of approximation techniques

• Evolutionary algorithms and genetic improvement
• EA in SW approximations

– Extension of Java - ExpAX
– Median

• EA in HW approximations
– Approximations at the hardware description language level
– Approximate multipliers in ANN
– Library of approximate components

• Formal relaxed equivalence checking in approximate computing
– Binary decision diagrams
– Approximate circuits with formal error guarantees

• Conclusions

Are F1 and F2 functionally equivalent?

62

x3 x2 x1 F1 F2

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 0 0

• Functional equivalence checking methods have been developed for decades.
‒ They exploit the model canonicity, SAT solving, algebraic approaches, …

• Relaxed functional equivalence checking is a new topic!
‒ How to prove the equivalence up to some bound?

• Scalability problem of (relaxed) equivalence checking!

𝐹2 = ¬ ¬(𝑥1 ∧ ¬𝑥2) ∧ 𝑥3

𝐹1 = (𝑥1 ∧ ¬𝑥2) ∨ ¬𝑥3

How to determine the error?

63

Error “estimation”
• Simulation
• Probabilistic models, e.g. Li at al., DAC 2015

All possible
input vectors

Approximate
circuit

1.3% 4.5%

Error = 3.1%

Exact error calculation
• Exhaustive Simulation – small problem instances only
• Analysis of Binary decision diagrams

• Average error, worst case, error rate …
• M. Soeken, D. Grosse, A. Chandrasekharan, and R. Drechsler: BDD

minimization for approximate computing, ASP-DAC 2016
• Average Hamming distance:

• Z. Vasicek and L. Sekanina: Circuit approximation using single- and
multi-objective cartesian GP. Gen. Prog. Evol. Mach., 17(2), 2016

• Not scalable for some problems such as multipliers
• Transforming to SAT problem

• Worst case error
• S. Venkataramani et al. : SALSA: systematic logic synthesis of

approximate circuits, DAC 2012

Binary Decision Diagrams

64

1 edge
0 edge

a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Truth table

f = ac + bc

Decision tree

1 0 0 0 1 0 1 0

a

b

c

b

c c c

f

1 0

a

b

c

f= (a+b)c

Reduced Ordered
BDD (ROBDD)
(canonical form)

Operations over (RO)BDDs implemented by many libraries, e.g. Buddy.

• Variable ordering is important, may result in a more complex (or
simple) BDD.

Pitfalls of Binary Decision Diagrams

65

x1

x3

x4

0 1

x2

x1x2 + x3x4

x1<x2<x3<x4
(optimal) x1<x3<x2<x4

x1

x3

x4

0 1

x2

x3

x2

The decision procedure is
trivial and reduces to
pointer comparison.

Equivalence checking using ROBDDs

66

F1

F2

G1

G2

4

6

7

8
9

10

5

ROBDD construction:
Apply (op, a, b) – creates ROBDD representing
logic function op over two ROBDDs a and b

Are circuits C1 and C2
functionally equivalent?

• Many logic operations can be performed efficiently on BDDs
– usually linear in size of result
– tautology and complement are constant time

Other operations on ROBDDs

67
Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Comp. 1986

Hamming distance using BDDs

68

• Create ROBDD for the parent circuit CA, the
offspring circuit CB and the XOR gates.

• Average Hamming distance:

SatCount(z1) = 2
SatCount(z2) = 0

SatCount (f) – gives the
number of input
assignments for which f is
‘1’.

x1 x2 x3 x4 # combinations

0 0 0 0 1

0 1 1 0 1

𝑒𝐻𝐷 =
1

2𝑖𝑛𝑝𝑢𝑡𝑠 𝑆𝑎𝑡𝐶𝑜𝑢𝑛𝑡(𝑧𝑖)
𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑖=1

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016

Circuit approximation with CGP and BDD

69

• Three criteria
• relative area, delay and error
• Error is the average Hamming distance (10 target error values Ei = 0.1 … 0.9 %)

• CGP parameters
• Rows = 1; Columns = # of gates in the original circuit
• 5 mut./chromosome, O = 5, 30 min/run, 10 independent runs
• Function set (relative area): and (1.333), or (1.333), xor (2.0), nand (1.0), nor (1.0),

xnor (2.0), buf (1.333), inv (0.667)

• Two stages:
• Find a circuit showing Ei , but a small (< 5%) imperfection tolerated

• weight fitness (error / area / delay): (we; wa; wd) = (0.12; 0.5; 0.38)
 (but the error still kept under 5% of Ei)

• 16 benchmark circuits

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016

CGP with BDD in the fitness function: Example

70

error/delay only

single run

error/area only

global
Pareto front

Properly optimize before doing approximations!

� Clmb (bus interface): 46 inputs, 33 outputs
� Original clmb: 641 gates, 19 logic levels, |BDD| = 6966, |BDDopt| = 627 (SIFT in 2.3 s)
� Optimized by CGP (no error allowed):

� Best: 410 gates, 12 logic levels -- in 29 minutes (2.9 x 106 generations)
� Median: 442 gates, 13 logic levels

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016

Average-case error analysis

71

• Let 𝑓: ℬ𝑛 → ℬ𝑚 be a Boolean function that describes correct
functionality and 𝑓 : ℬ𝑛 → ℬ𝑚 an approximation of it. The
average-case error is defined as the sum of absolute differences
in magnitude between the original and approximate circuit,
averaged over all inputs:

where int x represents a function returning a decimal value of
the m-bit binary vector x.

• No practically useful method capable of establishing the
average-case error using a SAT-based solver has been proposed
up to now. The BDDs seem to be the only viable option how to
calculate this error metrics.

𝑒𝑎𝑣𝑔 𝑓, 𝑓 =
1
2𝑛 | int 𝑓 𝑥 − int(𝑓 𝑥)

∀𝑥∈ℬ𝑛

|

Average-case error analysis using BDD

72
VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017

Approximate adder

Accurate adder
CGP in approximate 16 bit adder design

m = n + 2
Example for n = 4: Because the
result of SUB is -32 … +31, the
max absolute value is 32 and 6
bits are needed for m.

The average time needed to perform the worst-case and the average-case error
analysis for w-bit adders:

BDD vs exhaustive simulation

73

bit-width inputs
parallel simulation BDD-based method speedup

emax + eavg emax eavg emax eavg

4-bit 8 4.5 us 10.3 us 14.0 us 0.43 u 0.32 u
8-bit 16 1.9 ms 3.5 ms 4.6 ms 0.54 u 0.42 u

12-bit 24 682.4 ms 127.9 ms 312.7 ms 5.33 u 2.18 u
16-bit 32 140.9 s 1.38 s 2.93 s 102.3 u 48.09 u

Notes
1) More than 100 randomly generated approximate adders were evaluated for each bit-width.
2) Time required to construct a BDD for a virtual circuit is included.

VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017

• Approximate 16 bit multipliers created using different methods
• PDP = Power Delay Product

Is the search-based approximation competitive?

74

16-bit approximate multipliers

16-bit mul. constructed
from 2-bit mults.

16-bit mul. constructed
from 8-bit mults.

Evolved 16-bit mult.

Vasicek Z.: DDECS 2017, Tutorial

List of the most complex arithmetic circuits that were successfully approximated
and whose error is formally guaranteed.

Approx. circuits with formal error guarantees

75

Aprox. circuit ewst eavg eprob ebf ewstac eHD method paper authors conference

32-bit adder
!analysed only!

X BDDs MACACO: Modeling and Analysis of Circuits for
Approximate Computing

Venkatesan, Agarwal, Roy,
Raghunathan

ICCAD 2011

8-bit multiplier X BDDs MACACO: Modeling and Analysis of Circuits for
Approximate Computing

Venkatesan, Agarwal, Roy,
Raghunathan

ICCAD 2011

8-bit multiplier X X X simulation Evolutionary Design of Approximate Multipliers Under
Different Error Metrics

Vasicek, Sekanina DDECS 2014

64-bit adder X BDDs Analyzing Imprecise Adders Using BDDs - A Case Study Yu, Ciesielski ISVLSI 2016
16-bit adder X SAT, bin

search
Approximation-aware Rewriting of AIGs for Error
Tolerant Applications

Chandrasekharan, Soeken,
Grosse, Drechsler

ICCAD 2016

16-bit adder X BDDs Approximation-aware Rewriting of AIGs for Error
Tolerant Applications

Chandrasekharan, Soeken,
Grosse, Drechsler

ICCAD 2016

16-bit adder X PDR Precise Error Determination of Approximated
Components in Sequential Circuits with Model Checking

Chandrasekharan, Soeken,
Grosse, Drechsler

DAC 2016

8-bit ALU c3540 X BDDs BDD Minimization for Approximate Computing Soeken, Grosse,
Chandrasekharan, Drechsler

ICCAD 2016

12-bit multiplier X X simulation Design of power-efficient approximate multipliers for
approximate artificial neural networks

Mrazek, Sarwar, Sekanina,
Vasicek, Roy

ICCAD 2016

8-bit mutiplier X X X X X simulation Automatic Design of Approximate Circuits by Means of
Multi-Objective Evolutionary Algorithms

Hrbacek, Mrazek, Vasicek DTIS 2016

16-bit adder X X BDDs Towards Low Power Approximate DCT Architecture for
HEVC Standard

Vasicek,Mrazek,Sekanina DATE 2017

Vasicek Z.: DDECS 2017, Tutorial

• Approximate computing is a hot topic!
– It addresses one of the most critical challenges of our society -- energy efficiency.

• The roots of approximate computing:
– energy-efficient computing is needed
– high variability in current/future technology nodes
– many applications are error resilient

• The approximation problem can be formulated as a multi-objective
design/optimization problem
– A holistic approach is needed.
– A great opportunity for EAs!

• Current use of EA in Approximate computing
– Optimization tasks (selection of types, variables, …)
– Genetic improvement (with errors enabled)
– Evolutionary design from scratch

Conclusions

76

• See references on particular slides
• Selected tutorial and survey papers on Approximate Computing

– J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for
energy-efficient design,” in Proc. of the 18th IEEE European Test Symposium. IEEE,
2013, pp. 1–6

– H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, “Neural acceleration for general-
purpose approximate programs,” Commun. ACM, 58(1): 105-115, 2015

– S. Mittal, “A survey of techniques for approximate computing,” ACM Computing
Surveys, 48(4), 1–34, 2016.

– Q. Xu, T. Mytkowicz, N. S. Kim. “Approximate Computing: A Survey,” IEEE Design
and Test, 33(1), 8-22, 2016.

– L. Sekanina, “Introduction to Approximate Computing” (embedded tutorial). IEEE
International Symposium on Design and Diagnostics of Electronic Circuits, DDECS
2016

– Z. Vasicek, “Relaxed equivalence checking: a new challenge in logic synthesis”
(embedded tutorial). IEEE International Symposium on Design and Diagnostics of
Electronic Circuits, DDECS 2017

References

77

• EHW group at Brno University of Technology
– Zdeněk Vašíček, Michal Bidlo, Roland Dobai
– Michaela Šikulová, Radek Hrbáček, Vojtěch Mrázek, David Grochol, Miloš Minařík,

Jakub Husa, Marek Kidoň, Michal Wiglasz and other students
• Research projects

– IT4Innovations Centre of Excellence – National supercomputing center
– Advanced Methods for Evolutionary Design of Complex Digital Circuits, 2014 –

2016 (Czech Science Foundation)
– Relaxed equivalence checking for approximate computing, 2016 – 2018 (Czech

Science Foundation)

Acknowledgement

78

EHW @FIT

http://www.fit.vutbr.cz/research/groups/ehw

Thank you for your attention!

