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The notion of approximation is well known in ... T FIT

* Theoretical computer science

— polynomial time approximation algorithms to find approximate solutions
to NP-hard optimization problems

* Stringology, bioinformatics
— approximate string matching
* Bio-inspired models in Al
— approximation of functions using artificial neural networks
* Mathematics
— approximation of functions; numerical mathematics
* Computer engineering
— FP numbers, computer arithmetic, ...

— S. H. Nawab et al.: Approximate Signal Processing, Journal of VLS| Signal
Processing , vol. 15, pp. 177-200, Jan. 1997.

Why Approximate Computing again?




Approximate computing (AC) in literature

* Search for "approximate computing" in articles by Google Scholar
(April, 2017)

Search for "approximate adder" and

Search for "approximate computing" "approximate multiplier" in the title of
in the title of the article the article
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Tutorial Outline T FIT

* Approximate Computing
— Motivation
— Error resilience
— Sensitivity analysis and error metrics
— Overview of approximation techniques
e Evolutionary algorithms and genetic improvement

* EA in SW approximations
— Extension of Java - ExpAX
— Median
* EA in HW approximations
— Approximations at the hardware description language level
— Approximate multipliers in ANN
— Library of approximate components
* Formal relaxed equivalence checking in approximate computing
— Binary decision diagrams
— Approximate circuits with formal error guarantees
* Conclusions



Power Density (W/cm?2)

The end of Dennard scaling
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Power density (power consumption per chip area) remained
acceptable from one technology node to another even with
increasing frequency (based on data for common processors).



Roots of the new interest in AC

oo . Data centers - monthly costs
* Energy efficiency and dark silicon i aon 0% con
— High performance & low power computing is Servers I
requested (Big data processing in data centres; Nt’:vwk(‘”bn:t-—
Mobile electronics with limited power budget) -

Other infrastructure [l

e Variability issues

— Many “unreliable” components on a chip
fabricated with modern process technologies
(Limited use of fault tolerant mechanisms
because they are expensive; Reliable computing
with unreliable ComponentS) 22nm MOSFET (line-edge and surface

roughness, random dopant fluctuations
=> threshold voltage variation)

* Errorresilience

— Many applications are error-resilient.
(We are willing to tolerate errors.)

golden s;olution 60% instructions



Error resilience

* Typical machine learning, signal processing and document processing
applications have a mix of resilient and sensitive computations.

* Chippa, 2013: 83% runtime spent in computations (such as matrix and vector
operations) that can be approximated.

% Runtime in resilient kernels Dominant resilient kernel (% runtime)

Online Data Clustering Distance Computation

Digit Recognition Distance Computation
Nutrition and Health Inf. Analysis Dot Product Computation
Census Data Classification Matrix Vector Multiplication
Census Data Modeling Matrix Vector Multiplication
Image Segmentation Distance Computation
Eye Model Generation Distance Computation
Eye Detection

Hand-writ. Digit Model Train.

Distance Computation
Dot Product Computation
Hand-writ. Digit Classification Dot Product Computation

Image Search Dot Product Computation

Document Search Dot Product Computation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 20% 40% 60% 80% 100%

Chippa, et al. Analysis and characterization of inherent application resilience for approximate computing , DAC 2013 7



The origin of resilience T FIT

Applications with analog inputs

— image processing, sensor data processing, voice
recognition, etc., that operate on noisy real-world data.
They are inherently resilient to some noise.

Applications with analog output

— multimedia, image rendering, sound synthesis, etc. The
output is intended for human perception and can
inherently tolerate errors imperceptible to users.

/\'__ |
Q Applications with no unique answer

— web search, machine learning, autonomous agents, etc.,
which do not offer a unique answer and multiple possible
answers are acceptable.

Iterative and convergent applications

— data analytics and numerical computations that iteratively
process large amounts of data. They often sample data,
stop the convergence procedure early, or apply
approximate heuristics.

Esmaeilzadeh et al.: COMM. OF THE ACM, 59(1), 2015 8



Approximate computing T FIT

 The concept of approximate computing has been developed in
different ways and at various levels of computing stack (circuit,
component, memory, processor, compilers, applications, ...)

e Software-level approximations

— Extensions of general purpose languages (Java, Verilog) to support
approximations in data types, operators, ... e.g. EnerJ, Axilog, ExpAx ...

— Neural network replaces general purpose code [Esmaeilzadeh el al., 2013]
* Specialized processors supporting approximate computing

— Improving Efficiency of Extensible Processors by Using Approximate
Custom Instructions [Kamal et al., 2014]

* Circuit approximation

— over-scaling based approximations
— functional approximations

* Memory approximation
— approximations in memory cells, organization, access, hierarchy ...



What is Approximate computing? T FIT

“Approximate computing exploits the gap between the
level of accuracy required by the applications/users and
that provided by the computing system, for achieving

diverse optimizations.”
[Mittal S., ACM Computing Surveys 2016]

“The requirement of exact numerical or Boolean
equivalence between the specification and

implementation of a circuit is relaxed in order to
achieve improvements in performance or energy

efficiency.”
[Venkatesan et al., 2011]

“Computing efficiently by producing results that are

good enough or of sufficient quality.”
[Venkataramani et al., DAC 2015]

10



Approximate computing as a new paradigm

* Approximations are conducted across the whole computer stack:
— Circuit
— Component
— Memory
— (Parallel) Processor architecture
— Algorithm
— Compiler
— Operating system
— Application

* A holistic approach is needed to find the best trade-off between
error, power and performance at the global (system) level.

 ACreduced energy requirements of many applications: image
processing, video processing, deep neural networks, ...

A great opportunity for EAs!

11



Sensitivity analysis

 The goal is to identify subsystems suitable for undergoing the approximation.

 Method: Random/guided modification of the original implementation and
statistical evaluation of the impact on the quality of result.

In software In hardware
e precision of number representation e bit width reduction
e data storage strategies e intentional disconnecting of

e code simplification components

e relaxed synchronization * timing changes

e unfinished loops e power supply voltage changes

e skipped function calls e fault injection
I
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Error metrics used in approximate computing

* Arithmetic error metrics ewse(f, f) = max | int(f(x)) — int(f(x)) |

— The worst-case error vxeB”
(error magnitude, error significance) eru(F.F) = ma | int(£(x)) — int(f (x)) |
— Relative worst-case error rel\Jo S ) T g xépn int(f (x))

— The average-case error

w1 .
(average error magnitude, mean eavg(f.f) = om Z | int(f(x)) —int(f(x)) |
error distance) vxeB™
* Generic error metrics (5.7) = 1 Z [FG) % £0o)
— Error probability (error rate) corooS /) = g vichn Al
— Maximum Hamming distance S
(bit-flip error) ens(f.f) = max Z fi(x) @ fi(x)
— Average Hamming distance i=0
* Application-specific error metrics o it .
— Distance error enalf.f) = on z Z fit) ® fi(%)
VxeBM™ i=0

— Accumulated worst-case error and
accumulated error rate f. f — original and approximate solution
n, m — the number of inputs and outputs
int — returns a decimal value from m bits
13



Approximation techniques - examples

e precision scaling

* |oop perforation

* |oad value approximation
* memorization

 task dropping/skipping

* memory access skipping
e data sampling

* using different program
(circuit) versions

Mittal S., ACM Computing Surveys, 2016

using inexact or faulty
hardware

voltage scaling
refresh rate reducing
inexact read/write

reducing divergence in
GPUs

lossy compression
use of neural networks.

14



SW approximation: Code replaced by ANN
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Functional approximation T FIT

* Principle: To implement a slightly different function that leads to
energy/delay/area reduction but a non-zero error.

Power: 193 uW Power: 100 uW
— Delay: 10 ns —_— Delay: 5 ns
— Area: 35um?2 — , Area: 20 um2
R » F(x)
— — Error: 5%
performance performance
error
area area
power  Traditional view power Approximate computing

Functional equivalence Relaxed functional equivalence

is requested between the specification

_ _ Error as a design metric!
and implementation at all levels.

A complex multi-objective design/optimization problem!

16




Languages supporting approximate computing T FIT

EnerJ [Sampson et al., PLDI 2011]
— An extension to Java that adds approximate data types.
— Approximate data can be processed more cheaply but less reliably.
— Approximate operations by generating code with cheaper approximate instructions.
— The system can statically guarantee isolation of the precise program component from
the approximate component.
* Rely [Carbin et al., OOPSLA 2013]

— Programmer can mark both variables and operations as approximate.

— Rely works at the granularity of instructions and symbolically verifies whether the
quality-of-result requirements are satisfied for each function.

— Rely requires programmer to provide preconditions on the reliability and range of the
data
* Axilog [Yazdanbakhsh et al., DATE 2015]

— A set of language annotations that provide the necessary syntax and semantics for
approximate hardware design and reuse in Verilog.

— Axilog enables the designer to relax the accuracy requirements in certain parts of the
design, while keeping the critical parts strictly precise.

e Others: ExpAX, Chisel, ...
* They require a hardware (CPU) supporting approximate computing

17



Quality programmable processors: Concept

Application
o prua“w QUALITY PROGRAMMABLE IMICROARCHITECTURE
Application Program Requirement - Decode & Quality Control Logic /.___- Tra nslat.e
Control instruction
v Vv V¥ quality
Q Register specification
o = Quality into accuracy
. ) = Software e — Configurable knobs built in
Program with e visible Error monitor hardware
Approximate =2 ‘,‘ Registers N D
instructions _ 7 -‘~\ Sso
Af" % 4 ~\ \}

Quality Programmable ISA

Quality fields in instructions

e.g. qpADD dest, op1, op2,
MAG, 1%

Feedback about actual error
which can be used by
software to determine quality
levels of future instructions.

Capable of executing
instructions with
different quality
levels

Example: Quora is an experimental quality configurable vector processor with 289 processing
elements in 45 nm technology [Venkataramani et al. Micro 46, 2013]



Timing induced approximations

Power reduction tricks

» Assume: Accurate circuit D, at
frequency f,

> D, Is approximated to D, which
can work at higher freq. f, (f,> f,)

» But, D, is operated at f, with
lower Vdd => power saving

Tspeed
* Design techniques

» over-clocking .
_ power
> voltage over-scaling =~——__

den = CVddzf

# of paths

Vdd = 1.2y  delay target

# of paths

# of paths

rd
path delay
Vdd = 1.2V Timing
F of errors
path delay

Vdd = 0.9V delay target Timing
) errors

path delay
Courtesy of K. Roy 19




Tutorial Outline T FIT
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Evolutionary algorithms: GA, GP, LGP, CGP, GE ...

T FIT

GE: grammatical evolution

Genotype

)

wop [TTTTTTTTT]

GA: vectors of parameters

BNF grammar

|8] 7156 [10]19] 4 3;1;0]:39]

Mapping process

<expr>
8%4=0
<expr> <op> <expr>
7%4=3
<var> <op> <expr>
16%42=1
1.0 <op> <expr>
6%4=2
1.0 / <expr>
10%4=2
1.0 / <pre_op> (<expr>)
(No calculation, because <pre_op>
has only one possible choice.)
1.0 / Sin (<expr>)
19%4=3
1.0 / Sin (<var>)
4%2=0
1.0 / Sin (X)

cf. HeuristicLab

N = {expr, op, pre_op, var}

T = {Sin, +, -, /, *, X, 1.0, (, )}
S = {expr}
P=

(1) <expr> := <expr> <op> <expr> (0)
| (<expr> <op> <expr>) (1)
|<pre_op> (<expr>) (2)
| <var> 3)
(2) <op> =+ (0)
I - )
1/ (@)
I+ (3
(3) <pre_op> := Sin
(4) <var> =X 0)
|1 1.0 (1)

Phenotype m

expr | op | expr

I var | / |pre_opkexprﬂ

1.0 Sin

X

GP: syntax trees

in0 inoll 3

inl

in2

LGP: machine level code

double LGP (double x ){
r[0] = x

r[2] = r[0] * r[0]
r[1] = r[2] + r[0]
r[3] = r[1] + r[0]
r[3] = r[3] + r[2]
r[0] = r[2] * r[1]
r[1] = r[1] + r[4]
r[0] = r[0] + r[3]
r[0] = r[1] * r[0]
return r0

s 7 out0 (5)

_\o outl (8)

(0,2,2)(0,1,0)(1,3,2)(3,2,0)(5,6,3) (4,6,1) (5, 8)

21



Cartesian Genetic Programming (CGP) [Miller, 1999] T FIT

e n, primary inputs e n, inputs of each node Nodes in the same
: - column are not allowed
* n, primary outputs e [ function set 0 be connected to
° n. columns e |[-back parameter each other.
® N rows No feedback!
- n, — n+n. 2 ] n+H(n=1)n, ) N
0 > ] b g(a’ ) [>

1> ni+1 — ni+n+1

kni-‘l D ni-l-ncnr'1 D

n_i+nr-1 —] ni+2n-1 / /

N. 22



CGP: Representation for logic networks

1,21, 1,22, 01,2, 4,2,5; 54,3, 3,02, 7,1,2, 1,6,5, 1,1,3; 89

Genotype (netlist):

n,+1 integers per node; n, integers for outputs;

Constant size: n.n(n, + 1) + n, integers

Phenotype (directed acyclic graph = circuit):
Variable size; unused nodes are ignored.

CGP parameters

e n.=3 (#rows)

e n.= 3 (#columns)

e n, = 3 (#inputs)

e n, =2 (#outputs)

e n,=2 (max arity)

e L = (level-back
parameter)

= {NAND(, NOR()
XOR 2) AND®), OR@)
NOT 5}

23



CGP: Fitness function for circuit design

2 |o abc ds . .
ooo o0 Specification
010 o1 (1-bit adder)
010 01 -
1 ”~5° 011 10 ’
5 100 01 .
100 01 fargettable:
not \ 110 10
q 111 11 => fitness = 16
3 | 500 o
and 001 0 |0
010 0 |0
1,21, 1,2,2, 0,1,2; 4,2,5; 54,3, 3,0,2; 7,1,2;, 1,6,5; 1,1,3; 8,9 g é é é 8
101 111
Typical fitness function (circuit functionality): 172 | 19 L sitoees = 10

The number of test vectors

K
— _u. Additional objectives:
f — |y I Wll . )
area (the number of gates)
=1 T » delay

[ Desired response * power consumption etc.

Circuit response
K = 2inputs for combinational circuits. Not scalable!!!

24



CGP: Mutation-based search

. Mutation: Randomly select h integers and replace them by randomly
generated (but legal) values:

9 9
1 S 1 S
d d
11 1
\
1,2,1;, 1,2,2; 0,1,2; 4,2,5; 5,4,3; ;|0,2; 7,1,2:1,6,5;1,1,3; 8,9 1,21, 1,2,2,0,1,2, 42,5, 54,3; 30,2; 7,1,2,1,6,5,1,1,3, 89
| | >
(a) mutation (b)
abc d s abc d s
000 o1 00O 00
001 0|0 001 01
010 0|0 010 01
011 10 011 10
100 0|0 100 01
101 1|1 101 10
110 1|1 110 10
111 11 => fitness = 10 111 11 => fitness = 16

(for full adder)

25



CGP: Search algorithm (1 + A) T FIT

Algorithm 1: CGP

Input: CGP parameters, fitness function

Output: The highest scored individual p and its fitness

= LY I SNV S

~

P < randomly generate population
EvaluatePopulation(P);

while (rerminating condition not satisfied) do
« < highest-scored-individual(P);

if fitness(a) > fitness(p) then

L p <

P < create \ offspring of p using mutation;

8 | EvaluatePopulation(P);

9 return p, fitness(p);

Fitness 13

Fitness 13

Fitness 06

Fitness 10

Fitness 10

Fitness 13

Fitness 09

Fitness 10

Fitness 11

Fitness 13

Fitness 08

Fithess 15

Fitness 10

Fitness 13

Fitness 11
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Why EA in Approximate computing? T FIT

e Why EAin AC?
— In AC, partially working solutions are sought.
— In EA, partially working solutions are improved.
— EAs are excellent in multi-objective design and optimization.
— Constraints can easily be handled.
— EA can be seeded with the original code (circuit).

* |s ACsimilar to Genetic improvement?

— Genetic improvement (of existing SW/HW) is the application of
evolutionary and search-based optimization methods with the aim
of improving functional and/or non-functional properties of existing
software/hardware

27



Genetic improvement of SW: Examples

automatic bug fixing (real bugs in real C programs)

— W. Weimer, et al. Automatic program repair with evolutionary computation. Communications of the ACM,
vol. 53, no. 5, pp. 109—-116, 2010.

* animproved version of C++ code from multiple versions of a program written
by different domain experts (e.g. improved MiniSAT)

— J. Petke, et al. Using genetic improvement and code transplants to specialise a C++ program to a problem
class. In 17th European Conference on Genetic Programming, LNCS, vol. 8599. Springer, 2014, pp. 137-149

* improved CUDA programs (DNA analysis SW)

— W. Langdon. Improving CUDA DNA Analysis Software with Genetic Programming. In Genetic and
Evolutionary Computation Conference (GECCO 2015): 1063-1070

* Bowtie2, a widely-used DNA sequencing system, consisting of 50k lines of C++
code, was reduced by Gl to 20k lines of code; with an average 70 times faster

execution than the original code N L P —
' I BNF
B Grammar
- W LEGI’I?O'C(? n GI’IO;M. I-;a;.;;)agolng Tr. on !l chde]al Population of modifications
vol. Computing. ,

/

/";z‘-%'
R Select
\ * Mutation and Crossover

Fitness

Modified Population of modifications

code



Genetic improvement vs. Approximate computing T FIT

The Genetic improvement method does not usually accept
solutions increasing the error (w.r.t the original implementation)
In AC, genetic improvement can tolerate some errors.

error

acceptable

approximate computing
® _— .
\ initial solution

. ‘ - . I
.4/ power

genetic improvement

29



How are EAs used in Approximate computing? T FIT

e Evolutionary optimization

— optimization of the data type (bit width) to variable assignment - in
the source code (e.g. GRATER)

— selection of operations to be approximated — in the source code
(e.g. ExpAX)

* Genetic improvement with errors enabled

— existing solutions (SW or HW) are approximated by GP to get a
suitable trade-off between error and power/performance (e.g.
ABACUS, EvoApprox8b, ...)

e Evolutionary design (from scratch)

— GP is used to evolve desired approximate solutions from scratch
(e.g. CGP in the multipliers approximatio, median, image filter ...)

30



Tutorial Outline T FIT

* Approximate Computing
— Motivation
— Error resilience
— Sensitivity analysis and error metrics
— Overview of approximation techniques

* Evolutionary algorithms and genetic improvement

* EA in SW approximations
— Extension of Java - ExpAX
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* EAin HW approximations
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— Binary decision diagrams
— Approximate circuits with formal error guarantees
* Conclusions
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SW approximation

Software is annotated in order to introduce approximations

@Approx int foo (

@Approx int x[][],

@Approx int y[]) {
@Approx int sum := 0;
for 1 = 1 .. x.length

for j =1 .. y.length

sum := sum + x[i]1[j] * y[j;
return sum;}

int <0.90*R(x,y)> foo (

int <R(x)> x[][] in wurel,
int <R(y)> y[] in wurel) {

int sum := 0 in wurel;
for 1 =1 .. x.length
for j =1 .. y.length

sum := sum + x[i]1[j] = y[j):
return sum;}

}

int foo (int x[][], int y[]) {
int sum := 0;

for 1 =1 .. x.length
for j =1 .. y.length

sum := sum + x[i1[j] * y[jl;

accepr magnitude(sum) < 0.10;
return sum;

(a) EnerJ [21]

* ExpAX

(b) Rely [4]

(c) ExpAX

— A new programming framework that employs error expectations.
— HWY/CPU supporting approximate computing is assumed.

— A static safety analysis is performed that uses the high-level expectations to
automatically infer a safe-to-approximate set of program operations

ExpAX: A Framework for Automating Approximate Programming, SCS Technical Report, GT-CS-14-05, Georgia Institute of Technology, July, 2014
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SW approximation: GA in ExpAX

Programming model with expectations (v
is variable)

accept rate(v) < 0.2
accept magnitude(v) > 0.9 with rate < 0.3

* Finding possible safe-to-approximate
variables

Unsafe-to-approximate variables are
variables violating memory safety or
functional correctness

* GA used to find a subset of safe-to-
approximate operations

Fitness = min. (W,.error + W,.energy)

Chromosome: a bit vector representing a

subset (approximate (‘0’) or precise(‘1’))

* Greedy algorithm used to refine the GA
result.

* Significant energy savings (up to 35%) with
large reduction in programmer effort (3x
to 113x less annotations w.r.t EnerJ) while
providing formal safety and statistical
guality-of-result guarantees.

ExpAX: A Framework for Automating Approximate Programming, SCS Technical Report, GT-CS-14-05, Georgia Institute of Technology, July, 2014

Approximate HW

Operation Technique

Integer Arithmetic/Logic Voltage Overscaling

Timing Error Probability
Energy Saving

Floating Point Arithmetic Bit-width Reduction

Mantissa Bits
Energy Saving

Double Precision Arithmetic Bit-width Reduction

Mantissa Bits
Energy Saving

SRAM Read (Reg File/Data Cache) Voltage Overscaling

Read Upset Probability
Energy Saving

SRAM Write (Reg File/Data Cache) Voltage Overscaling

Write Failure Probability
Energy Saving

DRAM (Memory) Reduced Refresh Rate

Per-Second Bit Flip Prob:
Memory Power Saving

float to_grayscale(Pixel p) {
float luminance;
luminance = p.r * 0.30 + p.g

return luminance;
}
float sobel(float[][] p) {
float x, y, gradient;
x = (p[0]1[0] + 2 + p[0]([1]
x += (p[2]1[0] + 2 * p[2][1]
y = (p[0][2] + 2 * p[1][2]
y += (p[0][0] + 2 % p[1][1]
gradient = sgrt(x * X + y * y)
gradient = (gradient > 0.7070)
accept rate[gradient] < 0.25;
return gradient;

*

+
+
+
+

*

.g » 0.59 +
accept magnitude[luminance] > 0.9 with rate < 0.35;

pLO1[2]);
pL21[2]);
PL2][2]);
pL2]1[0]1);

"2 0.7070

Example
p.b * 0.11;

. gradient;
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Median in image filters T FIT

corrupted image filtered image
(10% pixels, impulse noise) (9-input exact median filter)




9-input median function T FIT

y o] #define PIX_SORT(a,b) {
MIN MAX if ((@)>(b))
PIX_SWAP((a), (b));
pixelvalue opt_med9 (pixelvalue * p) 1
{
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;
PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1l], p[4]) ; PIX_SORT(p[2], p[5]) ;
PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;
PIX_SORT(p[4], p[2]) ; return(p[4]) ;
}

Source: http://ndevilla.free.fr/median/median.pdf
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Approximate median using CGP T FIT

Cartesian Genetic Programming (CGP) for median approximation

 Median network (consisting of up to N operations) is represented by means of
an one-dimensional array of N nodes.

 Each node can act as: identity (0), minimum (1), maximum (2)
* Each candidate solution is encoded using 3N + 1 integers.
* Fitness function (single objective)
error = ZlOCandidate (l) - Oreference (l)l
i€S
 Example for 3-input median:

4

min max min max —_ max
2 /_ f
N

Chromosome: 0, 2,3; 3,2,0; 0,2,2; 5,3,1,6,1,2; 7,0,0; 6,8,2; 8

lo
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Approximate median using CGP T FIT

Experimental setup

(1+4)-ES, no crossover, 5 % of the chromosome mutated

T Wedand | Median2s
9 25

1 1
Generations 3 x 10° (3 hours) 3 x 10° (3 hours)
Training vectors 1 x 10* 1 x10°
Reference (exact) solution 38 operations 220 operations
Number of nodes 6 — 34 operations 10 — 200 operations

20% operations l 60% operation original
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Approximate median: Quality

9-input median 25-input median
fully-working: 38 operations fully-working: 220 operations

95.29% 21% reduction o0 94.4% 27% reduction
T T 0T T T

. — 9-median, 30-ops | 80% |-
S S — . 60% :
____________________ _ 40%
.................... _ 20%

100%
80%
60%
40%
20%

0%

T T T T T T

. — 25-median, 160-ops |

45.9% 54% reduction

T T T T T T

80%
60%
40%
20%

0%

0% _ ........ ....... § ....... ..... Bl — 25-median, 100-0ps _
30% oo ST N N S N
20% i [ SO SRS S SO S
0% |
0% L ; ; j i ' ' | '

Relative frequency
Relative frequency

84% reduction 81% reduction

] e, SO SO e . — 9-median, 6-ops | 0% ... — 25.median, 40-ops |

Wil |

40% _ .......... .......... 238% ........ ........ 19;:4.%4..4.5 .......... .......... — 20%
20% _ .......... 143% ; 123%0_ 10%

0%

. .
—4 -3 -2 -1 0 1 2 3 4 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
Distance error Distance error
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Approx. 9-median as SW for microcontrollers

Impl. Time [us] Energy [nWs]
STM32 PIC24 PIC16 STM32 PIC24 PIC16

6-ops 2.8 545 1705 86 377 342

10-ops 3.3  70.8 2515 102 490 504

14-0ops 3.9  86.8 336.5 118 600 674 34.9% error prob.,
18o0ps 4.5 1045 424.1 138 723 850 max. error dist. 2
22-ops 5.0 116.7 4878 151 808 978 >27% power reduction
26-ops 5.9  130.0 558.0 179 900 1118 4.8% error prob.
30-ops 6.0  142.0 627.4 181 983 1257 max. error dist. 1
34-ops 6.4  154.0 819.7 196 1066 1643 21% power reduction
38-ops 6.9 1655 885.0 210 1145 1774 | fully-working median
Cgsort 285 11062 — 869 7655 = —

ops = operations in the source code.

#define PIX_SORT(a,b) {
if ((@)>(b))
PIX_SWAP((a), (b));
}

V. Mrazek, Z. Vasicek and L. Sekanina. GECCO Gl Workshop, 2015 .



Energy-efficient implementation of sorting networks T FIT

* Key idea: reduce the number of compare-and-swap operation in
sorting networks to improve energy-efficiency

 To model the error introduced by the approximations in sorting
networks, the distance between the rank of the returned element and

rank given by the specification is measured.

16-input sorting network 256-input sorting network

implementation C2 X implementation S2_C2 L implementation S12 100 %
I H (]

||||||||||||||

||||||||||||||||

implementation C1

: : 17 | 17
2 2 - ] L 1
3[ 3[ 33F N\, i 33} | 90 %
3 A 49 | AN 4 a9} : 80 %
x 5[ 5[ 65 |- N R 65 | i o
3 s 6l % sif . 4 81| ] 70 %
7 7 o 97| . R 97| . o
i=
= 8 8 £ 113} N g 13| } 60 %
5 9 9 5 129} L 4 129} | 50 %
S0 10 2 145} . § 145 | ] 40 %
S 1 1 S 161 AN {1 e} ] °
O 12 O 177} AN . 177 | R 30 %
13 13 193} AN 1 13} .
i; i; - 2090 |- \ 1 200} ] 20 %
et g e b o deebe e STt O H 225 | 1 25} . 9
16 6] T 21} A 2a) 10 %
wemwwerseguynigs oo EEEREEEE 236 it ] s >0%
Output rank Output rank I S e RN T CRerDIIER2RARA
Output rank Output rank
H . QO H . o)
power reduction: 9% power reduction: 52%

error: <2 for 99% cases error: <14 for 99% cases

MRAZEK V., VASICEK Z.: Automatic Design of Arbitrary-Size Approximate Sorting Networks with Error Guarantee. In: PATMOS

2016, pp. 221-228
VASICEK Z., MRAZEK V.: Trading between Quality and Non-functional Properties of Median Filter in Embedded Systems. Genetic

Programming and Evolvable Machines, 2017, 18:45-82
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Tutorial Outline T FIT

* Approximate Computing
— Motivation
— Error resilience
— Sensitivity analysis and error metrics
— Overview of approximation techniques

* Evolutionary algorithms and genetic improvement

* EA in SW approximations
— Extension of Java - ExpAX
— Median
* EA in HW approximations
— Approximations at the hardware description language level
— Approximate multipliers in ANN
— Library of approximate components
* Formal relaxed equivalence checking in approximate computing
— Binary decision diagrams
— Approximate circuits with formal error guarantees

e Conclusions
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Functional circuit approximation T FIT

Original design:
gate level / RTL / behavioral

Quality metric \ \L

A 1 A
carg(F.1) =35 ). Int(f()) = int(F () |

VxeBN

e Design methodology
e Manual [Kulkarni et al.: J. Low Power Electronic 2011]

e Automatic (= some heuristics used)

e Heuristic algorithms: SALSA (DAC 2012), SASIMI (DATE 2013), ABACUS
(DATE 2014), ASLAN (DATE 2014), AIG-REV (ICCAD 2016) ...

e GP-based methods: CGP (ICES 2013, DDECS 2014, EuroGP 2015, IEEE
Tr. on EC 2015, FPL 2016, GENP 2016), GP (ABACUS with NSGA-II 2017)
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Manual approximation: Multipliers

MSB removed!

) sl AxB 0 1 2 3
b1 :::}__ :::>—__-

" 0 o 0O 0 O
) ) >— - . 1 0 1 2 3
! [ - - o] 2 0 2 4 &6
A5 > o 3 0 3 6
v ) ol J

o/ o approximated

accurate

e Correct results for 15 out of 16 input combinations (almost 50% area
reduction, lower delay).

* Used as a building block for larger multipliers and then in image processing
applications.

Error probability Dynamic power reduction for various frequencies

Bit- Error-Prob | Mean-Error | Max-Error Bit F 1.25F 1.5F 1.75F 2F Avg.
Width %) | o) | o) | (%) | B | (%)
2 0.0625 1.39% 22.22% 2 | 449 | 421 | 421 | 489 | 489 | 454

;‘ 8 ‘11 ? g;"s’; gg; 4 | 137 | 316 | 448 | 447 | 465 | 363

40 . 0 . 0
3 0.G75 3319, 3 330, 8 33.1 404 26.3 48.8 58.9 41.5
T 01 3% T D 35% 16 | 256 | 296 | 324 | 338 | 374 | 318

Kulkarni et al. Trading Accuracy for Power in a Multiplier Architecture, VLSI Design, 2011 43



ABACUS: Approximations at Behavioral RT-level T FIT

original exact AST modified AST a.pproxima!te.
design description design description

e Original file: Verilog
e Abstract Syntax Tree (AST) transformations
(mutations)
Simulation ] — Data type simplification
(ModelSim/Verilator) — Operation transformations (e.g. + -> or)
— Arithmetic expression transformation
- -
— Variable to Constant transformations
Compilation + Synthesis variants —_ Loop tra nsfo rm at|ons
(Design Compiler) ) original * * .
Search algorithm: NSGA-Il — based

Fitness is obtained by circuit simulation and
combines the error & power

Design Files

FAIL

Testbench Files
PASS

[ 3 &

g Q

/%
e

Tear
* %
ot X

accuracy

Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017 44



ABACUS: Results

Benchmark problems:

Design Class of Application | #Lines | Area (um?) | Power (mW) | Quality Measure Quality
perceptron Machine Learning 188 | 37775.16 2.74 | classification error 82.9%
FIR filter Signal Processing 265 | 40390.20 6.89 MSE 99.45%

FFT Signal Processing 255 18480.96 2.07 MSE 100%
block matching || Computer Vision 1277 | 80272.44 30.42 PSNR 30.66 dB
Results of evolutionary approximation:
or¥ R or or¥ or
0 Par e st '
2ot : —— 1o} ot} ol
* 30 ‘ o st & lf’ < <
£ aotl. o0 Exf 'g’zo- . S 1of
3 50 T B 5| . 3 | &
S 6ot ey ! %30 ag'ns-
* 70 : fa &l °-40_: a
w0 j‘ aof . ! o ¢
90 ; . ; ; S . | | | gl | y - . |
85 80 A;:urawig/o) 65 60 100 QOACCLIraBCOy ) 70 60 100 99 98 97 96 95 306 305 304 303 302 304

(a) Perceptron

Nepal K. et al.: Automated High-Level Generation of Low-Power Approximate Computing Circuits, Trans. on Emerging Topics in Computing, 2017

(b) FIR Filter

Accuracy (%)

(c) FFT

Accuracy (dB)

(d) Block Matching
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GRATER: GA-based optimization of data types

e Sensitivity analysis performed to find safe-to- 2 . —
. . . v [ Approximate I Exac
approximate variables (AV) in OpenCL kernel. ¢ (= Approvimate BN Exact]
. . . - 2 15
* Chromosome: n integers specifying precision = ad ¥ 12
: : g 10
(i.e. data type) of n variables from AV. go B i 6
* Objective: to find an approximate kernel that ~ ® 2 - I - Bl BIEE l
minimizes the resource utilization on FPGA < l i B
. . . r-gaussian  sobel dct conv n-body  gmean
while meeting the target quality.
— 2.98x
R Exact i 3.0x T T T
OpenCL Kernel ‘go . ||:| FPGA | GPUl
= 2.02x
F 20x 71% 1.82
Source-to-SourceCompiler\ '?g 15 L 137 1.41% — _|
|I| Population a 0 1.11x 1.01x 1.02x 1.03x g 1.07x
| (Modified kernel) E 10 Fr- . . N - ’
/ 2 05x — — — — E
Selection l(c:nutationl -§_ 0.0x L
” rossover n r-gaussian  sobel dct conv n-body  gmean
N Gpy
Accelerated Proﬁliny
Fitness Evaluation 1.0% [
\ / \» 0.8%
eememe_.\/_Final Set of Approximate Kernels 38
 Area #1 Area #2 Area #3 ) — 0.6%
- v ------------------------------------- ‘ 02 0 0.059% Rl U 0.046%
OpenCL : 0.0% 0.003% 0016% | 0'%/0 " =L =i
to N FPGA r-gaussian  sobel dct conv n-body avg
FPGA
Lotfi A. et al.: GRATER: An Approximation Warkfl.ow for Exploiting Data-Level Parallelism in FPGA Acceleration. DATE 2016 46



CGP for circuit (functional) approximation

@ Initial circuit

- Error-oriented (single-objective) method $ /,H‘Res“'“”gc‘““‘t
« CGP gradually degrades a fully functional circuit s #
until a circuit with a required error is obtained. < if
Then, the area (and so power consumption) is
minimized for this error. o >
* Resources-oriented (single-objective) 1 .
method o #,%
« CGP is used to minimize the error, but only 5 i
limited resources (components) are provided, E
insufficient for constructing a fully functional 5
circuit. Area
* Multi-objective optimization % LTy
 All target parameters are optimized together. © ®et T
<T: Pareto @ +
front o °

Vv

Error
47



Energy-efficient implementation of ANNs

Approximations introduced in:

ANN structure — removing nodes of NN
[Venkataramani et al. ISLPED’14]

e Learning algorithm

Memory — approximate Load/Store
[Srinivasan et al. DATE’16]

Pipeline
* Reducing data bit-width

[Judd et al. ICS’16]
Multiplication (approx. 45% of total power)

Multiplierless multiplication
[Sarwar et al. DATE’16]

[Du et al. ASP-DAC’14]

Activation
i I I
\ * Activation fu nction
°

Sum function
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Energy-efficient implementation of ANNs

MNIST dataset classification: 32x32 — 100 — 10 MLP network (classification accuracy
94.16% with accurate implementation). We introduced an approximate multiplier
by adding a jitter function A(a, b), resulting in a 5.2% error for multiplication.

Scenario A: Scenario B:
* Multiplication e 80% of multiplications are by O
m(a,b) = a-b+ A(a,b) e Multiplication
 Classification accuracy : : _ 0 ifa=0vb=0
10.77% Y m(a,b) = {a b+ A(a, b) otherwise

e C(Classification accuracy : 94.20%

Output error of neurons in the hidden layer
. 1

0.8

o
)

Sample
o
H
Absolute error

o
N

200 550 20 30 40 50 60 70 80 90 100 -
Neuron
: : (a) . : - . o
Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,” 49

ICCAD 2016



CGP in approx. multiplier design for ANNs

Accurate multiplier —initial circuit (6)
* CSAM RCA, CSAM RCA, RCAM, WTM CLA, WTM CSA, WTM RCA
Allowed errors: ¢ € {0.5%, 1%, 2%, 5%, 10%, 15%, 20%}
CGP parameters
« n; €{14,22}; n, € {14,22};n,. = 1; 250 < n,. < 780
* Functions: {NOT, AND, NAND, OR, NOR, XOR, XNOR}
* Error constraints:
1. Va,b:|lm(a,b) —axb| <g-2M
2. Va:m(a,0) =m(0,a) =0
* Fitness function:

C(m) = {—GateSC ount(m) if constraints (1) and (2) met,
—® otherwise

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,"50
ICCAD 2016



CGP in approx. multiplier design for ANNs

* Intotal, 852 approximate 7-bit and 11-bit multipliers were evolved by
CGP.

* Multipliers were sign-extended using one’s complement.
 The 8-bit and 12-bit multipliers were applied in NNs.

 The NNs were retrained with approximate multiplication operation using
backpropagation algorithm.

* Approximate multipliers showing the best trade off between power and
accuracy in NN were selected (for different error targets).

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016
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Evolved approximate multipliers for ANNs

Power and area of 8 bit approximate multipliers Power and area of 12 bit approximate multipliers

500 1400

450 1200

400

350 1000

300 800

250

200 600

150 400

100

. il . I ...l
0 I | -I -I 0 [ | | [ |
0% 0,50% 1% 2% 5% 10% 15% 20% 0% 0,50% 1% 2% 5% 10% 15% 20%
EPWRuUW BAREA pm2 MPWRUW ®AREA um2

Results of synthesis of sign-extended multipliers with Synopsys DC
45 nm technology
Timing:
8-bit multipliers: 2.5 GHz
12-bit multipliers: 2 GHz
Accurate multiplier was implemented in Verilog using standard * arithmetic
operator

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”

ICCAD 2016 =



Energy-efficient implementation of ANNs: MLP T FIT

* Handwritten number dataset
(dataset used for benchmarking)

* Fully connected MLP network 4’&\
 28x28inputs, 300 hidden neurons, M

10 outputs

weights weights

* 60k training images
° 10k testing images Input layer Hidden layer  Output layer

 More than 238k multiplications for
approximation

* |Initial classification accuracy:
— 8b:97.67%
— 12b: 97.70%

Yoynih v In
TN NN ol
CNES A R R
04 oQ B ¥ xa Do S
- N0 D0

=
O |
~ N
O/
o1
7
O/

MY LN
eGP
L LPlLwn
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Energy-efficient implementation of ANNs: LeNet T FIT

* Complex real-world problem

e Convolutional LeNet NN

e 278,104 multiplications in 6 layers
e 73k training images

e 26k testing images

 Approximation introduced in L1,L3,L5
and L6 layers

* Initial classification accuracy:
— 8b: 86.85%
— 12b: 86.90%

L1 - Convolutional L2 — Subsampling L3 — Convolutional L4 — Subsampling L5 — Convolutional L6 — Fully connected
117,600 multiplications 4,704 multiplications 150,000 multiplications 1,600 multiplications 3,000 multiplications 1,200 multiplications

|

6@28x28 6@14x14 16@10x10 . 16@5x5 120@1x1 10 values 5/

Input image
32x32



Energy-efficient implementation of ANNs: Summary T FIT

Classification Accuracy and power reduction (in multiplication)

(8 bit) -20%  -30% -57% -77% -82% -91% -91% |-36% -25% -9%
(12 bit) -50% -43% -66% -70% -85% -86% -87% [-60% -20% -1%
100%

95%
90% MNIST w=8
250, B MNIST w=12
B SVHN w=8
80%
B SVHN w=12
75%
70%

0% 0.50% 1% 2% 5% 10% 15% 20% \ {1} {1,3} {1,3,5,7}}

Power

Classification accuracy of NN

Approximation error € of multipliers Y

Multiplierless multiplication by
Sarwar et al. DATE’2016

Mrazek, Sarwar, Sekanina, Vasicek, Roy: “Design of power-efficient approximate multipliers for approximate artificial neural networks,”
ICCAD 2016
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Library of approximate 8 bit adders and multipliers T FIT

e Parallel multi-objective CGP:

e CGP + Non-dominated Sorting Genetic Algorithm Il (NSGA-II) [Hrba¢ek, GECCO
2015]

e Parallel implementation: vectorized, multi-threaded, multiple islands
(computer cluster employed)

e Constraints: worst case error, worst case relative error
e Initial population: a set of fully working conventional circuits
e Fitness: mean relative error, power consumption, delay

orig approx

orig

O is the i-th circuit output
i=1..2M

fmre = 2N1

Target circuits - Inputs: N; = 16; Outputs: N, = 9 (adders), 16 (multipliers)
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CGP parameters T FIT

Population size: 500 candidate circuits
Generations: 100k
Mutation: 5%

Parallel CGP: 10 islands exchanging circuits every 1000
generations (120 cores)

CGP array: 1 x 200 nodes (adders), 1 x 1000 nodes (mult.)

CGP function set (180 nm technology library):

e BUF, INV, AND2, OR2, XOR2, NAND2, NOR2, XNOR2, NAND3, NOR3,
MUX2, AOI21,0AI121, Full Adder, Half Adder

e 3-input/2-output nodes used
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CGP: Initial population

Architecture Power Area Delay
Ripple-Carry Adder 100.00% 100.00% 100.00%
Carry-Select Adder 201.18% 174.78% 61.15%
Carry-Lookahead Adder 414.74% 334.78% 61.99%
HVTA (Brent-Kung) 286.00% 201.74% 68.52%
HVTA (Han-Carlson) 286.00% 201.74% 68.52%
HVTA (Kogge-Stone) 371.48% 257.39% 59.77%
HVTA (Sklansky) 305.07% 215.65% 60.45%
TA (Brent-Kung) 282.99% 201.74% 67.25%
TA (Han-Carlson) 295.74% 212.17% 61.87%
TA (Knowles) 362.25% 257.39% 59.94%
TA (Kogge-Stone) 342.20% 243.48% 57.68%
TA (Ladner-Fischer) 282.99% 201.74% 67.25%
TA (Sklansky) 298.34% 212.17% 57.84%

Architecture Power Area Delay
Ripple-Carry Array | 100.00% 100.00% 100.00%
Carry-Save Array using RCA | 102.30% 100.00% 71.16%
Carry-Save Array using CSA 108.42% 106.16% 62.03%
Wallace Tree using RCA | 104.29% 107.39% 68.91%
Wallace Tree using CLA | 116.10% 148.48% 51.26%
Wallace Tree using CSA | 120.12% 122.35% 53.28%

13 conventional 8-bit adders
TA =Tree Adder
HVTA = Higher Valency Tree Adder

6 conventional 8-bit multipliers
RCA = Ripple-Carry Adder

CSA = Carry-Save Adder

CLA = Carry-Lookahead Adder
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Library of 8-bit approx. adders and multipliers

e Large library of approximate arithmetic circuits
e 430 non-dominated adders (evolved from 13 accurate adders)
e 471 non-dominated multipliers (evolved from 6 accurate multipliers)

450 Error-power projection — 110 140 E!,rror-powe;r proj ectio;n s
400 " e olg accurate | 100 : H : : H
Ada KIT 1205 S SR S o] 110
ssol M T 1 Heo R TTTTR
: B X i X 0 % xi 1100
300 —' B s I o e M e . 80 100 Fx>5§<><x --------- x’fé --------- X B S e
. | — = ; z s s /
§zso-“" -------------------- 4 LRSS ”‘be%i ;">$< X gog
%’ 200 _& ______________________________ i 60 %' g 8O- "‘*)/ """ xxx """"""""" -3@“ """""""""""""""""""" 80 %‘
(<% A 50 o g. 2 X % 3
: e X‘\/ : ' H H 70
1 e e i N 7 ] EO— - »‘%"X ----- R S— —
s . — . 0 %%’%ﬁ 60
a 30 : : e S :
71 ) S e esesasssnsesaseissesanesanssaannns A '
. . S— - : : g : ; 50
20 i i : : i
"= 2 4 6 8 10 12 14 16 204 2' ; “5 ; 1io N 40
mean relative error [%] mean relative error [%]
Approximate adders Approximate multipliers
(100% is Ripple-Carry Adder) (100% is Ripple-Carry Array Multiplier)

V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina: EvoApprox8b: Library, DATE 2017, p. 1-4
KIT: M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel: A low latency generic accuracy configurable adder, DAC 2015, pp. 86:1-86:6.
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Library of 8-bit approx. adders and multipliers

Approximate adders (430), exact adders (43)

Circuit 15 Est. area Est. delay Est. power Nodes HD MAE MSE MRE WCE WCRE EP OPS

adds_000 820 ym? 1.314ns 19431 W 10 138496 1.71875 6.00000  0.88% 7 100%  71.875%
adds_001 2040 um? 0718 ns 681.20 pW 42 0 0.00000 0.00000  0.00% 0 0% 0.000 %
adds_002 836 pm? 1.282 ns 194.75 pw 13 140448 1.69531 5.85938 0.88 % 7 100%  71.484%
adds_003 912 pm? 0.379ns 266.66 pW 20 192640 9.64844 138.25000 521% 24 100%  96.875%
add8_004 708 pm? 1213 ns 205.54 pW 9 134528 1.37500 3.25000 0.75 % 5 200%  76562% (EEIEED

Approximate multipliers (471), exact multipliers (28)

Circuit 1Y Est. area Est. delay Est. power Nodes HD MAE MSE MRE WCE WCRE EP OPS

mul3_000 9224 pm? 3015ns 493322 W 137 176134 9852710 27520.00000 1.99 % 820 560%  86490% (B EE)
mulg_001 5200 pm? 3.566 ns 2524.84 pW 91 310752 23995550 108908.84375 536 % 1671 100%  9s.160% (EEYEED)
mul8_002 6715 um? 2.086 ns 278947 pw 132 339806  329.88147 207883.35278  6.70% 2193 700%  98452% (EXEED
mul8_003 4172 pm? 1.963 ns 1816.06 pW 79 376002  624.46875 67989857422  10.00 % 2911 700%  98934% (EIEED
mul8_004 5034 pm? 1.944 ns 1893.73 pW 104 382402  639.22653 709554.15625 9.76 % 3143 253%  99.071% (EXEED

Synthesis results for 45 nm and 180 nm technology (Cadence Encounter RTL
Compiler), 7 error metrics

Click h t
http://www.fit.vutbr.cz/research/groups/ehw/approxlib/ )> D(I)%VNE{)eAS
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Tutorial Outline T FIT

* Approximate Computing
— Motivation
— Error resilience
— Sensitivity analysis and error metrics
— Overview of approximation techniques

* Evolutionary algorithms and genetic improvement

* EA in SW approximations
— Extension of Java - ExpAX
— Median
* EAin HW approximations
— Approximations at the hardware description language level
— Approximate multipliers in ANN
— Library of approximate components
* Formal relaxed equivalence checking in approximate computing
— Binary decision diagrams
— Approximate circuits with formal error guarantees
* Conclusions
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Are F, and F, functionally equivalent?

x

w
X

N
X
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-
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N
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x3 Dc OR
2 S
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Fl — (x1 N _Ixz) \Y _Ix3
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e Functional equivalence checking methods have been developed for decades.
— They exploit the model canonicity, SAT solving, algebraic approaches, ...
e Relaxed functional equivalence checking is a new topic!
— How to prove the equivalence up to some bound?
e Scalability problem of (relaxed) equivalence checking!
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How to determine the error? T FIT

Error “estimation”

Simulation
Probabilistic models, e.g. Li at al., DAC 2015

Exact error calculation
Exhaustive Simulation — small problem instances only

Analysis of Binary decision diagrams

Average error, worst case, error rate ...
e M. Soeken, D. Grosse, A. Chandrasekharan, and R. Drechsler: BDD
minimization for approximate computing, ASP-DAC 2016
Average Hamming distance:
e Z.Vasicek and L. Sekanina: Circuit approximation using single- and
multi-objective cartesian GP. Gen. Prog. Evol. Mach., 17(2), 2016

Not scalable for some problems such as multipliers

Transforming to SAT problem

Worst case error

e S.Venkataramani et al. : SALSA: systematic logic synthesis of
approximate circuits, DAC 2012

All possible
input vectors

!

Approximate
circuit

!

v [

Error =3.1%
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Binary Decision Diagrams T FIT

f=ac+bc
f=(a+b)c
f
abc|f
00010 , ©
0010 2l
010]|0 (b)
0111 / y
100]|0
1011 O R
1101|0 / ! / !
1111 : : - '
Ofj{ottjott2ttJott2tyjoylz
Truth table Decision tree Reduced Ordered
1 edge BDD (ROBDD)
- ==-0edge (canonical form)

Operations over (RO)BDDs implemented by many libraries, e.g. Buddy.

64



Pitfalls of Binary Decision Diagrams

* \Variable ordering is important, may result in a more complex (or
simple) BDD.

X Xy + X3X,4

o IE

X4 <Xp<X3<X4
(optimal)

65



Equivalence checking using ROBDDs T FIT

Are circuits C1 and C2 ROBDD construction:

functionauy equivalent? Apply (op, a, b) — creates ROBDD representing
logic function op over two ROBDDs a and b

The decision procedure is
trivial and reduces to
pointer comparison.



Other operations on ROBDDs T FIT

 Many logic operations can be performed efficiently on BDDs
— usually linear in size of result
— tautology and complement are constant time

Procedure Result Time Complexity
Reduce G reduced to canonical form O(G|-loglG)
Apply J1 <0p> f, O(IGG,)
Restrict f |xl-=b O (|G |-loglG))
Compose s, O(IG,[*IG,)
Satisfy-one some element of Sf O(n)

Satisfy-all Sf 0) (n-|Sf|)
Satisfy-count ISfI o(G))

Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans. on Comp. 1986
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Hamming distance using BDDs T FIT

= >0 Y SatCount (f) — gives the
0 Z; g
21_) = ¥, z, 4»@ number of input
x4j - ﬁ\) assignments for which fis
C. <
Di=cs
A |/
Bar
C

SatCount(z;) =2
SatCount(z,) =0

7.
y

B

x, #combinations

e Create ROBDD for the parent circuit C,, the
offspring circuit C; and the XOR gates.

e Average Hamming distance: 0O 1 1 0O 1
1 outputs
eHD=2inputS Z SatCount(z;)
i=1

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 683



Circuit approximation with CGP and BDD

Three criteria

* relative area, delay and error
* Erroris the average Hamming distance (10 target error values E;=0.1 ... 0.9 %)

CGP parameters
 Rows = 1; Columns = # of gates in the original circuit

* 5 mut./chromosome, A =5, 30 min/run, 10 independent runs

* Function set (relative area): and (1.333), or (1.333), xor (2.0), nand (1.0), nor (1.0),
xnor (2.0), buf (1.333), inv (0.667)

Two stages:
* Find a circuit showing E;, but a small (< 5%) imperfection tolerated

» weight fitness (error / area / delay): (w,; w_; w,) = (0.12; 0.5; 0.38)
(but the error still kept under 5% of E))

16 benchmark circuits

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 59



CGP with BDD in the fitness function: Example

error/arlea only error/dellay only

L 410 gates

l singlerun  °

©
N
T

©
w
T

0.7L |
0.8l |
0.9} RS

100 90 80 areal%] 40 30 _ 100 90 80 delay(%] 40 30

O Clmb (bus interface): 46 inputs, 33 outputs
O Original clmb: 641 gates, 19 logic levels, |[BDD| = 6966, |BDD,,| = 627 (SIFT in 2.3 s)
Q Optimized by CGP (no error allowed):

O Best: 410 gates, 12 logic levels -- in 29 minutes (2.9 x 10° generations)
O Median: 442 gates, 13 logic levels

[ Properly optimize before doing approximations! }

Vasicek Z., Sekanina L.: Evolutionary Design of Complex Approximate Combinational Circuits. Gen. Prog. and Evol. Mach. 17(2), 2016 /0



Average-case error analysis T FIT

* Let f:B"™ — B™ be a Boolean function that describes correct
functionality and f: B™ — B™ an approximation of it. The
average-case error is defined as the sum of absolute differences
in magnitude between the original and approximate circuit,
averaged over all inputs:

o 1 | -
cavg(f.f) =5 ). 1nt(f() = int(F () |
VxeBM"
where int(x) represents a function returning a decimal value of
the m-bit binary vector x.

* No practically useful method capable of establishing the
average-case error using a SAT-based solver has been proposed
up to now. The BDDs seem to be the only viable option how to
calculate this error metrics.
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Average-case error analysis using BDD

m=n+2
X 2/’1 < ’;l/; A Example for n = 4: Because the
n+1 result of SUB is -32 ... +31, the
DUT 7 max absolute value is 32 and 6
n. B f’(x) bits are needed for m.

Approximate adder " n+2 m

SuB /—| ABS /> D(x)
»| A -
GOLDEN | 71
MODEL [ 7 ABSOLUTE DIFFERENCE
> B f()C)

D(X) = (dm-l’ dm-.?: AR ] dI’ d())

CGP in approximate 16 bit adder design

Algorithm 2: average-case error analysis %

Input: BDD representation of the virtual circuit (d) £

Output: The average arithmetic error () E:
1 Equg < 0; | |
2forie{m—-1,m-2,...,0} do Fa0%f
3 L Eavg & Eavg + 20721 . satcount(d;); s
4 return ¢, ; g

1 I 1 i i ]
0.0% 0.1% 0.2% 0.5% 1.0% 2.0% 5.0% 10.0%
Maximum allowed worst-case error (E)

VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017
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BDD vs exhaustive simulation

The average time needed to perform the worst-case and the average-case error
analysis for w-bit adders:

bit-width i parallel simulation BDD-based method speedup
t-wiat mPUtS gmax+ 8avg Emax gavg Emax gavg
4-bit 8 4.5 us 10.3 us 140us 043 x 0.32x
8-bit 16 1.9 ms 3.5ms 46ms 054x 0.42x
12-bit 24 682.4 ms 1279 ms 312.7ms 533 x 2.18x
32 14095 138s  2.93s

Notes
1) More than 100 randomly generated approximate adders were evaluated for each bit-width.

2) Time required to construct a BDD for a virtual circuit is included.

VASICEK Z., MRAZEK V., SEKANINA L.: Towards Low Power Approximate DCT Architecture for HEVC Standard. DATE 2017
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Is the search-based approximation competitive? T FIT

e Approximate 16 bit multipliers created using different methods
 PDP = Power Delay Product

16-bit mul. constructed
from 2-bit mults.

16-bit mul. constructed
from 8-bit mults.

PDP [10 *2Ws]

Evolved 16-bit mult.

T T T T T T
_Worst case relative error [%]
eee EVOApproxLib16 s+ 44 Bit-width truncation
mmg ConfMultl6x16Lit »»» Kulkarni 2x2
+¢*¢ ConfMultlexloeVl »*s EVOApproxLib8

Accurate (*)

ees BSDLC

Vasicek Z.: DDECS 2017, Tutorial 74



Approx. circuits with formal error guarantees

List of the most complex arithmetic circuits that were successfully approximated
and whose error is formally guaranteed.

32-bit adder BDDs MACACO: Modeling and Analysis of Circuits for Venkatesan, Agarwal, Roy, ICCAD 2011

lanalysed only! Approximate Computing Raghunathan

8-bit multiplier X BDDs MACACO: Modeling and Analysis of Circuits for Venkatesan, Agarwal, Roy, ICCAD 2011
Approximate Computing i

8-bit multiplier X X X simulation Evolutionary Design of Approximate Multipliers Under  Vasicek, Sekanina DDECS 2014
Different Error Metrics

64-bit adder X BDDs Analyzing Imprecise Adders Using BDDs - A Case Study  Yu, Ciesielski ISVLSI 2016

16-bit adder X SAT, bin Approximation-aware Rewriting of AlGs for Error Chandrasekharan, Soeken, ICCAD 2016

search Tolerant Applications o s, izl

16-bit adder X BDDs Approximation-aware Rewriting of AIGs for Error Chandrasekharan, Soeken, ICCAD 2016
Tolerant Applications Grossejlbrechsler

16-bit adder X PDR  Precise Error Determination of Approximated Chandrasekharan, Soeken, DAC 2016
Components in Sequential Circuits with Model Checking Grosse, Drechsler

8-bit ALU c3540 X BDDs BDD Minimization for Approximate Computing Soeken, Grosse, ICCAD 2016

Chandrasekharan, Drechsler

12-bit multiplier X X simulation Design of power-efficient approximate multipliers for Mrazek, Sarwar, Sekanina, ICCAD 2016
approximate artificial neural networks Rl oy

8-bit mutiplier X X X X X simulation Automatic Design of Approximate Circuits by Means of  Hrbacek, Mrazek, Vasicek DTIS 2016
Multi-Objective Evolutionary Algorithms

16-bit adder X X BDDs Towards Low Power Approximate DCT Architecture for Vasicek,Mrazek,Sekanina DATE 2017
HEVC Standard

Vasicek Z.: DDECS 2017, Tutorial 75



Conclusions T FIT

Approximate computing is a hot topic!

— It addresses one of the most critical challenges of our society -- energy efficiency.
The roots of approximate computing:

— energy-efficient computing is needed

— high variability in current/future technology nodes

— many applications are error resilient
The approximation problem can be formulated as a multi-objective
design/optimization problem

— A holistic approach is needed.

— A great opportunity for EAs!
Current use of EA in Approximate computing

— Optimization tasks (selection of types, variables, ...)

— Genetic improvement (with errors enabled)

— Evolutionary design from scratch
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Thank you for your attention!

http://www.fit.vutbr.cz/research/groups/ehw
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